New Lipschitz-type conditions for uniqueness of solutions of ordinary differential equations

被引:0
作者
Cid, Jose Angel [1 ,2 ]
Pouso, Rodrigo Lopez [1 ,3 ]
Lopez, Jorge Rodriguez [1 ,3 ]
机构
[1] CITMAga, Santiago De Compostela 15782, Spain
[2] Univ Vigo, Dept Matemat, Campus Ourense, Vigo 32004, Spain
[3] Univ Santiago Compostela, Dept Estat Analise Matemat & Optimizac, Campus Vida, Santiago De Compostela 15782, Spain
关键词
Uniqueness; Ordinary differential equation; Lipschitz condition; Osgood condition; f ( t; y ); x ) ? k ( t ) ? ( y; x ); for x < (1; 2); EXISTENCE;
D O I
10.1016/j.jmaa.2022.126349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some generalized Lipschitz conditions which imply uniqueness of solutions for scalar ODEs. We illustrate the applicability of our results with examples not covered by earlier Lipschitz-type uniqueness tests. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 14 条
  • [1] Agarwal R. P., 1993, UNIQUENESS NONUNIQUE, V6
  • [2] Existence of unique solutions for perturbed autonomous differential equations
    Angel Cid, Jose
    Lopez Pouso, Rodrigo
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 : 798 - 812
  • [3] A generalization of Montel-Tonelli's Uniqueness Theorem
    Angel Cid, Jose
    Lopez Pouso, Rodrigo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) : 1173 - 1177
  • [4] Does Lipschitz with Respect to x Imply Uniqueness for the Differential Equation y′ = f (x, y)?
    Angel Cid, Jose
    Lopez Pouso, Rodrigo
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (01) : 61 - 66
  • [5] [Anonymous], 1999, NIEUW ARCH WISKD 4 S
  • [6] Uniqueness and existence results for ordinary differential equations
    Cid, JA
    Heikkilä, S
    Pouso, RL
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 178 - 188
  • [7] On first-order ordinary differential equations with nonnegative right-hand sides
    Cid, JA
    Pouso, RL
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) : 1961 - 1977
  • [8] Coddington EA, 1955, Theory of ordinary differential equations
  • [9] Diblík J, 2014, ELECTRON J QUAL THEO, P1
  • [10] Hartman P., 2002, CLASSICS APPL MATH, V38, DOI [10.1137/1.9780898719222, DOI 10.1137/1.9780898719222]