The CRR1 Nutritional Copper Sensor in Chlamydomonas Contains Two Distinct Metal-Responsive Domains

被引:79
作者
Sommer, Frederik [1 ,2 ]
Kropat, Janette [1 ]
Malasarn, Davin [1 ]
Grossoehme, Nicholas E. [3 ]
Chen, Xiaohua [4 ]
Giedroc, David P. [3 ]
Merchant, Sabeeha S. [1 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Max Planck Inst Mol Plant Physiol Golm, D-14476 Potsdam, Germany
[3] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
[4] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[5] Univ Calif Los Angeles, Inst Genom & Prote, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
TRANSCRIPTION FACTOR; DNA-BINDING; SBP-DOMAIN; GENE-EXPRESSION; PHOTOSYSTEM-I; STRUCTURAL-CHARACTERIZATION; MOLECULAR CHARACTERIZATION; NUCLEAR ACCUMULATION; THIOLATE CLUSTERS; HIGH-AFFINITY;
D O I
10.1105/tpc.110.080069
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Copper response regulator 1 (CRR1), an SBP-domain transcription factor, is a global regulator of nutritional copper signaling in Chlamydomonas reinhardtii and activates genes necessary during periods of copper deficiency. We localized Chlamydomonas CRR1 to the nucleus in mustard (Sinapis alba) seedlings, a location consistent with its function as a transcription factor. The Zn binding SBP domain of CRR1 binds copper ions in vitro. Cu(I) can replace Zn(II), but the Cu(II) form is unstable. The DNA binding activity is inhibited in vitro by Cu(II) or Hg(II) ions, which also prevent activation of transcription in vivo, but not by Co(II) or Ni(II), which have no effect in vivo. Copper inhibition of DNA binding is reduced by mutation of a conserved His residue. These results implicate the SBP domain in copper sensing. Deletion of a C-terminal metallothionein-like Cys-rich domain impacted neither nutritional copper signaling nor the effect of mercuric supplementation, but rendered CRR1 insensitive to hypoxia and to nickel supplementation, which normally activate the copper deficiency regulon in wild-type cells. Strains carrying the crr1-DCys allele upregulate ZRT genes and hyperaccumulate Zn(II), suggesting that the effect of nickel ions may be revealing a role for the C-terminal domain of CRR1 in zinc homeostasis in Chlamydomonas.
引用
收藏
页码:4098 / 4113
页数:16
相关论文
共 73 条
  • [71] A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors
    Yamasaki, K
    Kigawa, T
    Inoue, M
    Tateno, M
    Yamasaki, T
    Yabuki, T
    Aoki, M
    Seki, E
    Matsuda, T
    Nunokawa, E
    Ishizuka, Y
    Terada, T
    Shirouzu, M
    Osanai, T
    Tanaka, A
    Seki, M
    Shinozaki, K
    Yokoyama, S
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2004, 337 (01) : 49 - 63
  • [72] ISOLATION OF A METAL-ACTIVATED TRANSCRIPTION FACTOR GENE FROM CANDIDA-GLABRATA BY COMPLEMENTATION IN SACCHAROMYCES-CEREVISIAE
    ZHOU, PB
    THIELE, DJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (14) : 6112 - 6116
  • [73] Metal Binding Affinities of Arabidopsis Zinc and Copper Transporters: Selectivities Match the Relative, but Not the Absolute, Affinities of their Amino-Terminal Domains
    Zimmermann, Matthias
    Clarke, Oliver
    Gulbis, Jacqui M.
    Keizer, David W.
    Jarvis, Renee S.
    Cobbett, Christopher S.
    Hinds, Mark G.
    Xiao, Zhiguang
    Wedd, Anthony G.
    [J]. BIOCHEMISTRY, 2009, 48 (49) : 11640 - 11654