The estimation of time-invariant parameters of noisy nonlinear oscillatory systems

被引:30
作者
Khalil, Mohammad [1 ]
Sarkar, Abhijit [1 ]
Adhikari, Sondipon [2 ]
Poirel, Dominique [3 ]
机构
[1] Carleton Univ, Dept Civil & Environm Engn, Ottawa, ON K1S 5B6, Canada
[2] Swansea Univ, Coll Engn, Swansea SA2 8PP, W Glam, Wales
[3] Royal Mil Coll Canada, Dept Mech & Aerosp Engn, Kingston, ON K7K 7B4, Canada
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
MONTE-CARLO METHODS; DATA ASSIMILATION; IDENTIFICATION; SIMULATION; FILTERS; MODELS;
D O I
10.1016/j.jsv.2014.10.002
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The inverse problem of estimating time-invariant (static) parameters of a nonlinear system exhibiting noisy oscillation is considered in this paper. Firstly, a Markov Chain Monte Carlo (MCMC) simulation is used for the time-invariant parameter estimation which exploits a non-Gaussian filter, namely the Ensemble Kalman Filter (EnKF) for state estimation required to compute the likelihood function. Secondly, a recently proposed Particle Filter (PF) (that uses the EnKF for its proposal density for the state estimation) has been adapted for combined state and parameter estimation. Numerical illustrations highlight the strengths and limitations of the MCMC. EnKF and PF algorithms for time-invariant parameter estimation. For low measurement noise and dense measurement data, the performances of the MCMC, EnKF and PF algorithms are comparable. For high measurement noise and sparse observational data, the EnKF fails to provide accurate parameter estimates. Hence the adapted PF algorithm becomes necessary in order to obtain parameter estimates comparable in accuracy to the MCMC simulation with EnKF. It highlights the fact that the augmented state space model for the combined state and parameter estimation contains stronger nonlinearity than the original state space model. Hence the EnKF effectively handles the state estimation of the original state space model, but it fails for the combined state and parameter estimation using the augmented system. The effectiveness of the EnKF for the state estimation is therefore leveraged in the MCMC simulation for the time-invariant parameter estimation. In order to obtain accurate parameter estimates using the augmented system, the adapted PP. becomes necessary to match the parameter estimates obtained using the MCMC simulation complemented by EnKF for likelihood function computation. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:81 / 100
页数:20
相关论文
共 83 条
  • [1] On the algebraic reconstruction of the Duffing's mechanical system
    Aguilar-Ibanez, Carlos
    Sanchez H, Jorge
    Suarez C, Miguel S.
    Martinez, Juan C.
    [J]. PHYSICS LETTERS A, 2008, 372 (25) : 4569 - 4573
  • [2] Anderson JL, 1999, MON WEATHER REV, V127, P2741, DOI 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO
  • [3] 2
  • [4] Andrieu C., 2003, P ICASSP 06 IEEE INT
  • [5] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [6] [Anonymous], 2001, KALMAN FILTERING NEU, DOI [10.1002/0471221546, DOI 10.1002/0471221546, DOI 10.1002/0471221546.CH7]
  • [7] [Anonymous], 2009, P INT FED AUT CONTR
  • [8] [Anonymous], 1999, KALMAN FILTERING REA
  • [9] [Anonymous], 2001, Nonlinearity in structural dynamics-Detection, Identification and Modelling, DOI DOI 10.1201/9780429138331
  • [10] Bendat J.S., 1998, NONLINEAR SYSTEMS TE