Fabrication and Characterisation of Silicon Quantum Dots in SiO2/Si3N4 Hybrid Matrix

被引:1
作者
Di, Dawei [1 ]
Perez-Wurfl, Ivan [1 ]
Conibeer, Gavin [1 ]
Green, Martin A. [1 ]
机构
[1] Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia
来源
NEXT GENERATION (NANO) PHOTONIC AND CELL TECHNOLOGIES FOR SOLAR ENERGY CONVERSION | 2010年 / 7772卷
关键词
Silicon quantum dots; nanocrystal growth; solar cell; x-ray diffraction; photoluminescence; THERMAL-EXPANSION COEFFICIENT; SI NANOCRYSTALS; FILMS; PHOTOLUMINESCENCE; LUMINESCENCE; CELLS;
D O I
10.1117/12.859715
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Si quantum dots in SiO(2)/Si(3)N(4) hybrid matrix on quartz substrates were fabricated by magnetron sputtering of alternating silicon rich oxide and Si(3)N(4) layers followed by different post-deposition anneals. X-ray diffraction results indicate that the average dimension of the Si QDs ranges from 1.6 to 5.2 nm. The size and crystallisation of the Si nanocrystals are dependent on a number of factors, including the annealing condition, the SRO thickness and the Si(3)N(4) barrier thickness, as evidenced in XRD and Raman measurements. In particular, thicker Si(3)N(4) barrier layers seem to be able to suppress the growth of Si nanocrystals more effectively. PL measurements indicate that the apparent bandgap of the samples investigated in this work is in the range 1.12-1.67 eV, which demonstrates the effect of quantum confinement. More interestingly, analysis of the PL data reveals that the PL peak energy does not only depend on the size of the nanocrystals, but also affected by other details of the nanocrystal formation. A simple core-shell model is constructed to illustrate our explanation. These findings offer a preliminary understanding of the nanocrystal growth and radiative recombination processes in this newly synthesized material.
引用
收藏
页数:8
相关论文
共 22 条
[1]  
BUUREN TV, 1998, PHYS REV LETT, V80, P3803, DOI DOI 10.1103/PHYSREVLETT.80.3803
[2]   Silicon quantum dot nanostructures for tandem photovoltaic cells [J].
Conibeer, Gavin ;
Green, Martin ;
Cho, Eun-Chel ;
Koenig, Dirk ;
Cho, Young-Hyun ;
Fangsuwannarak, Thipwan ;
Scardera, Giuseppe ;
Pink, Edwin ;
Huang, Yidan ;
Puzzer, Tom ;
Huang, Shujuan ;
Song, Dengyuan ;
Flynn, Chris ;
Park, Sangwook ;
Hao, Xiaojing ;
Mansfield, Daniel .
THIN SOLID FILMS, 2008, 516 (20) :6748-6756
[3]  
DI D, 2010, NANOSCALE RES UNPUB
[4]   Modified Raman confinement model for Si nanocrystals [J].
Faraci, G ;
Gibilisco, S ;
Russo, P ;
Pennisi, AR ;
La Rosa, S .
PHYSICAL REVIEW B, 2006, 73 (03)
[5]   Classification and control of the origin of photoluminescence from Si nanocrystals [J].
Godefroo, S. ;
Hayne, M. ;
Jivanescu, M. ;
Stesmans, A. ;
Zacharias, M. ;
Lebedev, O. I. ;
Van Tendeloo, G. ;
Moshchalkov, V. V. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :174-178
[6]  
Green M, 2007, P 22 EU PVSEC MIL IT
[7]  
GREEN MA, 2006, P 21 EU PVSEC DRESD
[8]   Solar Cell Efficiency Tables (Version 34) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm .
PROGRESS IN PHOTOVOLTAICS, 2009, 17 (05) :320-326
[9]   Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells [J].
Hao, X. J. ;
Cho, E-C. ;
Flynn, C. ;
Shen, Y. S. ;
Park, S. C. ;
Conibeer, G. ;
Green, M. A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (02) :273-279
[10]   STRUCTURE AND GRAIN-BOUNDARY DEFECTS OF RECRYSTALLIZED SILICON FILMS PREPARED FROM AMORPHOUS-SILICON DEPOSITED USING DISILANE [J].
HASEGAWA, S ;
WATANABE, S ;
INOKUMA, T ;
KURATA, Y .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (05) :1938-1947