Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria
被引:170
|
作者:
Li, Qingdu
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
Chongqing Univ Posts & Telecommun, Res Ctr Anal & Control Complex Syst, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
Li, Qingdu
[1
,2
]
Zeng, Hongzheng
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Res Ctr Anal & Control Complex Syst, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
Zeng, Hongzheng
[2
]
Li, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Res Ctr Anal & Control Complex Syst, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
Li, Jing
[2
]
机构:
[1] Chongqing Univ Posts & Telecommun, Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Res Ctr Anal & Control Complex Syst, Chongqing 400065, Peoples R China
This paper studies a four-dimensional (4D) memristive system modified from the 3D chaotic system proposed by Lu and Chen. The new system keeps the symmetry and dissipativity of the original system and has an uncountable infinite number of stable and unstable equilibria. By varying the strength of the memristor, we find rich complex dynamics, such as limit cycles, torus, chaos, and hyperchaos, which can peacefully coexist with the stable equilibria. To explain such coexistence, we compute the unstable manifolds of the equilibria, find that the manifolds create a safe zone for the hyperchaotic attractor, and also find many heteroclinic orbits. To verify the existence of hyperchaos in the 4D memristive circuit, we carry out a computer-assisted proof via a topological horseshoe with two-directional expansions, as well as a circuit experiment on oscilloscope views.
机构:
King Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi ArabiaKing Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
Al-khedhairi, A.
Elsonbaty, A.
论文数: 0引用数: 0
h-index: 0
机构:
Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Studies, Dept Math, Al Kharj, Saudi Arabia
Mansoura Univ, Dept Engn Math & Phys, Fac Engn, Mansoura 35516, EgyptKing Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
Elsonbaty, A.
Abdel Kader, A. H.
论文数: 0引用数: 0
h-index: 0
机构:
Mansoura Univ, Dept Engn Math & Phys, Fac Engn, Mansoura 35516, EgyptKing Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
Abdel Kader, A. H.
Elsadany, A. A.
论文数: 0引用数: 0
h-index: 0
机构:
Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Studies, Dept Math, Al Kharj, Saudi Arabia
Suez Canal Univ, Fac Comp & Informat, Dept Basic Sci, Ismailia 41522, EgyptKing Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia