On the Number of Limit Cycles Bifurcating from the Linear Center with an Algebraic Switching Curve

被引:5
作者
Wang, Jiaxin [1 ]
Zhao, Liqin [1 ]
Zhou, Jinping [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Limit cycle; The first order Melnikov function; Switching curve; DIFFERENTIAL-SYSTEMS; MELNIKOV ANALYSIS; PIECEWISE;
D O I
10.1007/s12346-022-00614-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the perturbations of system (x)over dot = y, (y)over dot = -x under arbitrary polynomial perturbations with switching curve y = x(m), where m is a positive integer. By analysing the first order Melnikov function, we obtain the lower bound and upper bound of the maximum number of limit cycles bifurcating from the period annulus if the first order Melnikov function is not identically 0.
引用
收藏
页数:42
相关论文
共 28 条
[1]   Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve [J].
Andrade, Kamila da S. ;
Cespedes, Oscar A. R. ;
Cruz, Dayane R. ;
Novaes, Douglas D. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 :1-36
[2]   Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold [J].
Bastos, Jefferson L. R. ;
Buzzi, Claudio A. ;
Llibre, Jaume ;
Novaes, Douglas D. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (06) :3748-3767
[3]   Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems [J].
Cen, Xiuli ;
Liu, Changjian ;
Yang, Lijun ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) :6083-6126
[4]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[5]   Limit cycles of discontinuous piecewise polynomial vector fields [J].
de Carvalho, Tiago ;
Llibre, Jaume ;
Tonon, Durval Jose .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :572-579
[6]   Global Dynamics of a Piecewise Smooth System for Brain Lactate Metabolism [J].
Francoise, J. -P. ;
Ji, Hongjun ;
Xiao, Dongmei ;
Yu, Jiang .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (01) :315-332
[7]  
Gasull A, 2020, ELECTRON J DIFFER EQ
[8]   A CHEBYSHEV CRITERION FOR ABELIAN INTEGRALS [J].
Grau, M. ;
Manosas, F. ;
Villadelprat, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) :109-129
[9]  
Han M., 2021, J. Nonlinear Mod. Anal, V3, P13, DOI DOI 10.12150/JNMA.2021.13
[10]   Equivalence of the Melnikov Function Method and the Averaging Method [J].
Han, Maoan ;
Romanovski, Valery G. ;
Zhang, Xiang .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (02) :471-479