CFD simulation of entrained-flow coal gasification: Coal particle density/size fraction effects

被引:100
作者
Slezak, Andrew [1 ,2 ]
Kuhlman, John M. [1 ,2 ]
Shadle, Lawrence J. [1 ]
Spenik, James [1 ,3 ]
Shi, Shaoping [1 ,4 ]
机构
[1] Natl Energy Technol Lab, Morgantown, WV 26507 USA
[2] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[3] REM Engn Serv, Morgantown, WV 26505 USA
[4] Ansys Inc, Morgantown, WV 26505 USA
关键词
Coal gasification; Entrained-flow reactor; CFD; Discrete Phase Method; DPM; Particle-wall interactions; Coal size/density fractions; NUMERICAL-SIMULATION; OPERATING-CONDITIONS; GASIFIER; COMBUSTION; MODEL;
D O I
10.1016/j.powtec.2010.03.029
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Computational Fluid Dynamics (CFD) simulation of commercial-scale two-stage upflow and single-stage downflow entrained-flow gasifiers was conducted to study effects of simulating both the coal particle density and size variations. A previously-developed gasification CFD model was modified to account for coal particle density and size distributions as produced from a typical rod mill. Postprocessing tools were developed for analysis of particle-wall impact properties. For the two-stage upflow gasifier, three different simulations are presented: two (Case 1 and Case 2) used the same devolatilization and char conversion models from the literature, while Case 3 used a different devolatilization model. The Case 1 and Case 3 solutions used average properties of a Pittsburgh #8 seam coal (d = 108 mu m, SG = 1.373), while Case 2 was obtained by injecting and tracking all of the series of 28 different coal particle density and size mass fractions obtained by colleagues at PSU as a part of the current work, for this same coal. Simulations using the two devolatilization models (Case 1 and Case 3) were generally in reasonable agreement. Differences were observed between the single-density solution and the density/size partitioned solution (Case 1 and Case 2). The density/size partitioned solution predicted nominally 10% less CO and over 5% more H-2 by volume in the product gas stream. Particle residence times and trajectories differed between these two solutions for the larger density/size fractions. Fixed carbon conversion was 4.3% higher for the partitioned solution. Particle-wall impact velocities did not vary greatly. Grid independence studies for the two-stage upflow gasifier geometry showed that the grid used in the comparison studies was adequate for predicting exit gas composition and wall impact velocities. Validation studies using experimental data for the Pittsburgh #8 coal from the SRI International pressurized coal flow reactor (PCFR) at 30 atmospheres indicated adequate agreement for gasification and combustion cases, but poor agreement for a pyrolysis case. Simulation of a single-stage downflow gasifier yielded an exit gas composition that was in reasonable agreement with published data. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 108
页数:11
相关论文
共 30 条
[1]  
BOCKELIE M, 2002, MODELING ENTRAINED F
[2]  
Bouma P.H., 1999, Numerical modelling of an entrained-flow gasification simulator
[3]   Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier [J].
Chen, CX ;
Horio, M ;
Kojima, T .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (18) :3861-3874
[4]   On the scaling-up of a two-stage air blown entrained flow coal gasifier [J].
Chen, CX ;
Miyoshi, T ;
Kamiya, H ;
Horio, M ;
Kojima, T .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1999, 77 (04) :745-750
[5]   Numerical simulation of entrained flow coal gasifiers. Part II: effects of operating conditions on gasifier performance [J].
Chen, CX ;
Horio, M ;
Kojima, T .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (18) :3875-3883
[6]   Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers [J].
Chen, CX ;
Horio, M ;
Kojima, T .
FUEL, 2001, 80 (10) :1513-1523
[7]   Characterisation of the properties of size fractions from ten world coals and their chars produced in a drop-tube furnace [J].
Cloke, M ;
Lester, E ;
Belghazi, A .
FUEL, 2002, 81 (05) :699-708
[8]  
ECKSTROM DJ, 2008, COAL PARTITIONING HI
[9]   A CFD based combustion model of an entrained flow biomass gasifier [J].
Fletcher, DF ;
Haynes, BS ;
Christo, FC ;
Joseph, SD .
APPLIED MATHEMATICAL MODELLING, 2000, 24 (03) :165-182
[10]   CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers [J].
Forstner, Martin ;
Hofmeister, Georg ;
Joeller, Markus ;
Dahl, Jonas ;
Braun, Markus ;
Kleditzsch, Stefan ;
Scharler, Robert ;
Obernberger, Ingwald .
PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2006, 6 (4-5) :248-261