NONCOMMUTATIVE AUSLANDER THEOREM

被引:20
作者
Bao, Y. -H. [1 ]
He, J. -W. [2 ]
Zhang, J. J. [3 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Auslander theorem; Cohen-Macaulay property; Artin-Schelter regular algebra; pertinency; homologically small; Hopf algebra action; DOWN-UP ALGEBRAS; REGULAR ALGEBRAS; RINGS; SINGULARITIES; RIGIDITY;
D O I
10.1090/tran/7332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the 1960s Maurice Auslander proved the following important result. Let R be the commutative polynomial ring C[x(1),..., x(n)], and let G be a finite small subgroup of GLn(C) acting on R naturally. Let A be the fixed subring R-G := {a is an element of R|g(a) = a for all g is an element of G}. Then the endomorphism ring of the right A-module RA is naturally isomorphic to the skew group algebra R*G. In this paper, a version of the Auslander theorem is proven for the following classes of noncommutative algebras: (a) noetherian PI local (or connected graded) algebras of finite injective dimension, (b) universal enveloping algebras of finite-dimensional Lie algebras, and (c) noetherian graded down-up algebras.
引用
收藏
页码:8613 / 8638
页数:26
相关论文
共 37 条
[1]   Auslander-Gorenstein rings [J].
Ajitabh, K ;
Smith, SP ;
Zhang, JJ .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (07) :2159-2180
[2]   Injective resolutions of some regular rings [J].
Ajitabh, K ;
Smith, SP ;
Zhang, JJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 140 (01) :1-21
[3]   DERIVATIONS AND SUTOMORPHISMS OF SOME QUANTUM ALGEBRAS [J].
ALEV, J ;
CHAMARIE, M .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) :1787-1802
[4]   Generic flatness for strongly noetherian algebras [J].
Artin, M ;
Small, LW ;
Zhang, JJ .
JOURNAL OF ALGEBRA, 1999, 221 (02) :579-610
[5]   RATIONAL-SINGULARITIES AND ALMOST SPLIT-SEQUENCES [J].
AUSLANDER, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 293 (02) :511-531
[6]   PURITY OF BRANCH LOCUS [J].
AUSLANDER, M .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (01) :116-&
[7]  
Bao .-H., J NONCOMMUT GEOM
[8]   Zariski cancellation problem for noncommutative algebras [J].
Bell, Jason ;
Zhang, James J. .
SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (03) :1709-1737
[9]  
Benkart G, 1999, J ALGEBRA, V213, P378
[10]   Down-up algebras [J].
Benkart, G ;
Roby, T .
JOURNAL OF ALGEBRA, 1998, 209 (01) :305-344