Study of the Hopf bifurcation in the Lorenz, Chen and Lu systems

被引:25
作者
Algaba, Antonio [1 ]
Dominguez-Moreno, Maria C. [1 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Dept Matemat, Ctr Invest Fis Teor & Matemat FIMAT, Huelva 21071, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, ES Ingenieros, Seville 41092, Spain
关键词
Lorenz equations; Hopf bifurcation; Degeneracy; Cusp bifurcation; Codimension-three bifurcation; Chen system; Lu system; INVARIANT ALGEBRAIC-SURFACES; CODIMENSION-2 BAUTIN BIFURCATION; CHAOTIC ATTRACTOR; HOMOCLINIC ORBITS; CENTER MANIFOLDS; MODEL; EXISTENCE; INTEGRALS; DYNAMICS; CENTERS;
D O I
10.1007/s11071-014-1709-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we perform a complete study of the Hopf bifurcations in the three-parameter Lorenz system, , with . On the one hand, we reobtain the results found in the literature for the Lorenz model when the three parameters are positive. On the other hand, we completely determine the loci of all the degeneracies exhibited by the Hopf bifurcation of the origin and of the nontrivial equilibria. In this last case, we demonstrate, among other things, that the first two Lyapunov coefficients simultaneously vanish in two codimension-three bifurcation points, giving rise in both cases to the coexistence of three periodic orbits involved in a cusp bifurcation. The analytical study that we carry out, where several complicated expressions have to be handled, successfully closes the problem of the Hopf bifurcations in the Lorenz system. Moreover, from our results, it is easy to obtain all the information on the Hopf bifurcations in the Chen and Lu systems, taking into account that they are, generically, particular cases of the Lorenz system, as can be seen by means of a linear scaling in time and state variables.
引用
收藏
页码:885 / 902
页数:18
相关论文
共 49 条
  • [1] Algaba A., 2013, ANAL T POINT H UNPUB
  • [2] Algaba A., 2014, DYN CONT B IN PRESS
  • [3] Centers on center manifolds in the Lorenz, Chen and Lu systems
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (04) : 772 - 775
  • [4] The Lu system is a particular case of the Lorenz system
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. PHYSICS LETTERS A, 2013, 377 (39) : 2771 - 2776
  • [5] Chen's attractor exists if Lorenz repulsor exists: The Chen system is a special case of the Lorenz system
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    [J]. CHAOS, 2013, 23 (03)
  • [6] A three-parametric study of the Lorenz model
    Barrio, R.
    Serrano, S.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 229 (01) : 43 - 51
  • [7] KNEADINGS, SYMBOLIC DYNAMICS AND PAINTING LORENZ CHAOS
    Barrio, Roberto
    Shilnikov, Andrey
    Shilnikov, Leonid
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [8] Bounds for the chaotic region in the Lorenz model
    Barrio, Roberto
    Serrano, Sergio
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (16) : 1615 - 1624
  • [9] Cao J., 2007, J MATH PHYS, V48, P1
  • [10] Complex dynamics in Chen's system
    Chang, Y
    Chen, GR
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 27 (01) : 75 - 86