Application of artificial intelligence techniques for automated detection of myocardial infarction: a review

被引:11
作者
Joloudari, Javad Hassannataj [1 ,2 ]
Mojrian, Sanaz [3 ]
Nodehi, Issa [4 ]
Mashmool, Amir [5 ]
Zadegan, Zeynab Kiani [1 ]
Shirkharkolaie, Sahar Khanjani [3 ]
Alizadehsani, Roohallah [6 ]
Tamadon, Tahereh [1 ]
Khosravi, Samiyeh [1 ]
Kohnehshari, Mitra Akbari [7 ]
Hassannatajjeloudari, Edris [8 ]
Sharifrazi, Danial [9 ]
Mosavi, Amir [10 ,16 ]
Loh, Hui Wen [11 ]
Tan, Ru-San [12 ,13 ]
Acharya, U. Rajendra [11 ,14 ,15 ]
机构
[1] Univ Birjand, Fac Engn, Dept Comp Engn, Birjand, Iran
[2] Amol Inst Higher Educ, Dept Comp Engn, Amol, Iran
[3] Mazandaran Univ Sci & Technol, Dept Informat Technol Engn, Babol, Iran
[4] Univ Qom, Dept Comp Engn, Qom, Iran
[5] Univ Genoa, Dipartimento Informat Bioingn Robot eIngn Sistemi, Genoa, Italy
[6] Deakin Univ, Inst Intelligent Syst Res & Innovat, Geelong, Vic 3216, Australia
[7] Bu Ali Sina Univ, Engn Fac, Comp Engn Dept, Hamadan, Hamadan, Iran
[8] Maragheh Fac Med Sci, Sch Nursing & Allied Med Sci, Dept Nursing, Maragheh, Iran
[9] Islamic Azad Univ, Dept Comp Engn, Shiraz Branch, Shiraz, Iran
[10] Obuda Univ, John von Neumann Fac Informat, H-1034 Budapest, Hungary
[11] Singapore Univ Social Sci, Sch Sci & Technol, Singapore, Singapore
[12] Natl Heart Ctr Singapore, Dept Cardiol, Singapore, Singapore
[13] Duke NUS Med Sch, Singapore, Singapore
[14] Ngee Ann Polytech, Singapore 599489, Singapore
[15] Asia Univ, Dept Biomed Informat & Med Engn, Taichung, Taiwan
[16] Slovak Univ Technol Bratislava, Inst Informat Engn Automat & Math, Bratislava, Slovakia
关键词
deep convolutional neural network; deep learning; diagnosis; electrocardiogram; machine learning; myocardial infarction disease; CONVOLUTIONAL NEURAL-NETWORK; ECG SIGNALS; 12-LEAD ECG; CLASSIFICATION; LOCALIZATION; ALGORITHM; DISEASE; SYSTEM; ENERGY;
D O I
10.1088/1361-6579/ac7fd9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective. Myocardial infarction (MI) results in heart muscle injury due to receiving insufficient blood flow. MI is the most common cause of mortality in middle-aged and elderly individuals worldwide. To diagnose MI, clinicians need to interpret electrocardiography (ECG) signals, which requires expertise and is subject to observer bias. Artificial intelligence-based methods can be utilized to screen for or diagnose MI automatically using ECG signals. Approach. In this work, we conducted a comprehensive assessment of artificial intelligence-based approaches for MI detection based on ECG and some other biophysical signals, including machine learning (ML) and deep learning (DL) models. The performance of traditional ML methods relies on handcrafted features and manual selection of ECG signals, whereas DL models can automate these tasks. Main results. The review observed that deep convolutional neural networks (DCNNs) yielded excellent classification performance for MI diagnosis, which explains why they have become prevalent in recent years. Significance. To our knowledge, this is the first comprehensive survey of artificial intelligence techniques employed for MI diagnosis using ECG and some other biophysical signals.
引用
收藏
页数:22
相关论文
共 108 条
[1]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198
[2]   Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Adam, Muhammad ;
Lih, Oh Shu ;
Sudarshan, Vidya K. ;
Hong, Tan Jen ;
Koh, Joel E. W. ;
Hagiwara, Yuki ;
Chua, Chua K. ;
Poo, Chua Kok ;
San, Tan Ru .
INFORMATION SCIENCES, 2017, 377 :17-29
[3]   Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Sudarshan, Vidya K. ;
Oh, Shu Lih ;
Adam, Muhammad ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Ghista, Dhanjoo N. ;
Martis, Roshan Joy ;
Chua, Chua K. ;
Poo, Chua Kok ;
Tan, Ru San .
KNOWLEDGE-BASED SYSTEMS, 2016, 99 :146-156
[4]   Deep Learning for Monitoring of Human Gait: A Review [J].
Alharthi, Abdullah S. ;
Yunas, Syed U. ;
Ozanyan, Krikor B. .
IEEE SENSORS JOURNAL, 2019, 19 (21) :9575-9591
[5]   A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion [J].
Ali, Farman ;
El-Sappagh, Shaker ;
Islam, S. M. Riazul ;
Kwak, Daehan ;
Ali, Amjad ;
Imran, Muhammad ;
Kwak, Kyung-Sup .
INFORMATION FUSION, 2020, 63 :208-222
[6]  
[Anonymous], 2010, 2010 4 INT C BIOINFO, DOI DOI 10.1109/ICBBE.2010.5514664
[7]  
[Anonymous], 2012, Int. J. Electr. Electron. Comput. Eng.
[8]  
Ansari Sardar, 2017, IEEE Rev Biomed Eng, V10, P264, DOI 10.1109/RBME.2017.2757953
[9]   Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier [J].
Arif, Muhammad ;
Malagore, Ijaz A. ;
Afsar, Fayyaz A. .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (01) :279-289
[10]   Classification of myocardial infarction with multi-lead ECG signals and deep CNN [J].
Baloglu, Ulas Baran ;
Talo, Muhammed ;
Yildirim, Ozal ;
Tan, Ru San ;
Acharya, U. Rajendra .
PATTERN RECOGNITION LETTERS, 2019, 122 :23-30