EKFNET: LEARNING SYSTEM NOISE STATISTICS FROM MEASUREMENT DATA

被引:21
作者
Xu, Liang [1 ]
Niu, Ruixin [1 ]
机构
[1] Virginia Commonwealth Univ, Elect & Comp Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
关键词
EKF; Fine-tuning; Recurrent Neural Network; Machine Learning; Backpropagation Through Time;
D O I
10.1109/ICASSP39728.2021.9415083
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, to reduce the time and manpower spent on fine-tuning an extended Kalman filter (EKF), we propose a new learning framework, EKFNet, for automatically estimating the best process and measurement noise covariance pair from the real measurement data. The EKFNet is trained by using backpropagation through time (BPTT). The proposed method can choose among several optimization criteria, such as maximizing the likelihood, minimizing the measurement residual error, or minimizing the posterior state estimation error. We illustrate the proposed method's performance using real GPS data, which outperforms existing methods and a manually tuned EKF.
引用
收藏
页码:4560 / 4564
页数:5
相关论文
共 22 条
[1]  
Abbeel P., 2005, RSS, V2, P1
[2]   Real time egomotion of a nonholonomic vehicle using LIDAR measurements [J].
Almeida, J. ;
Santos, V. M. .
JOURNAL OF FIELD ROBOTICS, 2013, 30 (01) :129-141
[3]  
[Anonymous], 1995, MULTITARGET MULTISEN
[4]  
[Anonymous], 2003, Beyond the Kalman Filter: Particle Filters for Tracking Applications
[5]  
Asmar Dylan., 2012, Nonlinear programming approach to filter tuning
[6]  
Bar-Shalom Yaakov, 2004, Tracking and Navigation: Theory Algorithms and Software
[7]  
Barratt ST, 2020, P AMER CONTR CONF, P1526, DOI [10.23919/ACC45564.2020.9147485, 10.23919/acc45564.2020.9147485]
[8]   Long Short-Term Memory Kalman Filters: Recurrent Neural Estimators for Pose Regularization [J].
Coskun, Huseyin ;
Achilles, Felix ;
DiPietro, Robert ;
Navab, Nassir ;
Tombari, Federico .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5525-5533
[9]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[10]  
Goodfellow I., 2016, DEEP LEARNING