Semi-Supervised Pattern Classification Using Optimum-Path Forest

被引:13
|
作者
Amorim, Willian P. [1 ]
Falcao, Alexandre X. [2 ]
Carvalho, Marcelo H. [1 ]
机构
[1] Univ Fed Mato Grosso do Sul, FACOM, Campo Grande, MS, Brazil
[2] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
来源
2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI) | 2014年
关键词
Semi-Supervised Learning; Pattern Recognition; Optimum-Path Forest Classifiers; SEGMENTATION;
D O I
10.1109/SIBGRAPI.2014.45
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a semi-supervised pattern classification approach based on the optimum-path forest (OPF) methodology. The method transforms the training set into a graph, finds prototypes in all classes among labeled training nodes, as in the original supervised OPF training, and propagates the class of each prototype to its most closely connected samples among the remaining labeled and unlabeled nodes of the graph. The classifier is an optimum-path forest rooted at those prototypes and the class of a new sample is determined, in an incremental way, as the class of its most closely connected prototype. We compare it with the supervised version using different learning strategies and an efficient method, Transductive Support Vector Machines (TSVM), on several datasets. Experimental results show the semi-supervised approach advantages in accuracy with statistical significance over the supervised method and TSVM. We also show the gain in accuracy of semi-supervised approach when more representative samples are selected for the training set.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [41] Semi-Supervised Hierarchical Graph Classification
    Li, Jia
    Huang, Yongfeng
    Chang, Heng
    Rong, Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6265 - 6276
  • [42] Manifold contraction for semi-supervised classification
    Hu EnLiang
    Chen SongCan
    Yin XueSong
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (06) : 1170 - 1187
  • [43] Semi-supervised News Genre Classification
    Slivka, Jelena
    Kovacevic, Aleksandar
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2013, 9 (01): : 32 - 37
  • [44] Semi-supervised classification with pairwise constraints
    Gong, Chen
    Fu, Keren
    Wu, Qiang
    Tu, Enmei
    Yang, Jie
    NEUROCOMPUTING, 2014, 139 : 130 - 137
  • [45] An efficient semi-supervised classification approach for hyperspectral imagery
    Tan, Kun
    Li, Erzhu
    Du, Qian
    Du, Peijun
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 97 : 36 - 45
  • [46] Semi-supervised sequence classification with HMMs
    Zhong, S
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2005, 19 (02) : 165 - 182
  • [47] Offline/realtime traffic classification using semi-supervised learning
    Erman, Jeffrey
    Mahanti, Anirban
    Arlitt, Martin
    Cohen, Ira
    Williamson, Carey
    PERFORMANCE EVALUATION, 2007, 64 (9-12) : 1194 - 1213
  • [48] A multi-manifold semi-supervised Gaussian mixture model for pattern classification
    Xing, Xianglei
    Yu, Yao
    Jiang, Hua
    Du, Sidan
    PATTERN RECOGNITION LETTERS, 2013, 34 (16) : 2118 - 2125
  • [49] A Semi-supervised Classification Method of Parasites Using Contrastive Learning
    Ren, Yanni
    Jiang, Hao
    Zhu, Huilin
    Tian, Yanling
    Hu, Jinglu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (03) : 445 - 453
  • [50] Semi-Supervised Pattern Classification Utilizing Fuzzy Clustering and Nonlinear Mapping of Data
    Du, Weiwei
    Urahama, Kiichi
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2007, 11 (09) : 1159 - 1164