Semi-Supervised Pattern Classification Using Optimum-Path Forest

被引:13
|
作者
Amorim, Willian P. [1 ]
Falcao, Alexandre X. [2 ]
Carvalho, Marcelo H. [1 ]
机构
[1] Univ Fed Mato Grosso do Sul, FACOM, Campo Grande, MS, Brazil
[2] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
来源
2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI) | 2014年
关键词
Semi-Supervised Learning; Pattern Recognition; Optimum-Path Forest Classifiers; SEGMENTATION;
D O I
10.1109/SIBGRAPI.2014.45
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a semi-supervised pattern classification approach based on the optimum-path forest (OPF) methodology. The method transforms the training set into a graph, finds prototypes in all classes among labeled training nodes, as in the original supervised OPF training, and propagates the class of each prototype to its most closely connected samples among the remaining labeled and unlabeled nodes of the graph. The classifier is an optimum-path forest rooted at those prototypes and the class of a new sample is determined, in an incremental way, as the class of its most closely connected prototype. We compare it with the supervised version using different learning strategies and an efficient method, Transductive Support Vector Machines (TSVM), on several datasets. Experimental results show the semi-supervised approach advantages in accuracy with statistical significance over the supervised method and TSVM. We also show the gain in accuracy of semi-supervised approach when more representative samples are selected for the training set.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [21] LANDSLIDE IMAGE CLASSIFICATION USING SEMI-SUPERVISED LEARNING
    He, Shi
    Jing, Haitao
    Tang, Hong
    Shen, Li
    Tao, Liangliang
    Cheng, Jiehai
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2643 - 2645
  • [22] A Semi-supervised Classification Using Gated Linear Model
    Ren, Yanni
    Li, Weite
    Hu, Jinglu
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [23] Speech emotion classification using semi-supervised LSTM
    Nattipon Itponjaroen
    Kumpee Apsornpasakorn
    Eakarat Pimthai
    Khwanchai Kaewkaisorn
    Shularp Panitchart
    Thitirat Siriborvornratanakul
    Advances in Computational Intelligence, 2023, 3 (4):
  • [24] Building Function Recognition Using the Semi-Supervised Classification
    Xie, Xuejing
    Liu, Yawen
    Xu, Yongyang
    He, Zhanjun
    Chen, Xueye
    Zheng, Xiaoyun
    Xie, Zhong
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [25] Semi-supervised text classification using partitioned EM
    Cong, G
    Lee, WS
    Wu, HR
    Liu, B
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2004, 2973 : 482 - 493
  • [26] A Fixed-Size Pruning Approach for Optimum-Path Forest
    Costa, Leonardo da Silva
    Barbosa, Gabriel Santos
    da Rocha Neto, Ajalmar Rego
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT II, 2019, 11507 : 723 - 734
  • [27] Using reactive tabu search in semi-supervised classification
    Zennaki, Mahmoud
    Ech-Cherif, Ahmed
    Lamirel, Jean Charles
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL II, PROCEEDINGS, 2007, : 340 - +
  • [28] Incorporating multiple distance spaces in optimum-path forest classification to improve feedback-based learning
    da Silva, Andre Tavares
    dos Santos, Jefersson Alex
    Falcao, Alexandre Xavier
    Torres, Ricardo da S.
    Magalhaes, Leo Pini
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (04) : 510 - 523
  • [29] Non-Technical Losses Identification Using Optimum-Path Forest and State Estimation
    Trevizan, Rodrigo Daniel
    Rossoni, Aquiles
    Bretas, Arturo Suman
    Gazzana, Daniel da Silva
    Bretas, Newton Geraldo
    Bettiol, Arlan Luiz
    Carniato, Antonio
    do Nascimento Passos, Luis Fernando
    Martin, Rodolfo de Podesta
    2015 IEEE EINDHOVEN POWERTECH, 2015,
  • [30] Augmentation Learning for Semi-Supervised Classification
    Frommknecht, Tim
    Zipf, Pedro Alves
    Fan, Quanfu
    Shvetsova, Nina
    Kuehne, Hilde
    PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 85 - 98