Inviscid limit for 2D stochastic Navier-Stokes equations

被引:8
|
作者
Cipriano, Fernanda [1 ,2 ]
Torrecilla, Ivan [3 ]
机构
[1] Univ Nova Lisboa, Grp Fis Matemat, P-1649003 Lisbon, Portugal
[2] Univ Nova Lisboa, Dept Matemat FCT, P-1649003 Lisbon, Portugal
[3] Univ Lisbon, Grp Fis Matemat, Inst Invest Interdisciplinar, P-1649003 Lisbon, Portugal
关键词
Stochastic Navier-Stokes equations; Stochastic Euler equations; Navier slip boundary conditions; Vanishing viscosity; Boundary layer; Turbulence; VANISHING VISCOSITY LIMIT; BOUNDARY-CONDITIONS; LARGE DEVIATIONS; EULER; CONSTRUCTION; EIGENVALUES; ROUGHNESS; FLOW;
D O I
10.1016/j.spa.2015.01.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider stochastic Navier-Stokes equations in a 2D-bounded domain with the Navier with friction boundary condition. We establish the existence and the uniqueness of the solutions and study the vanishing viscosity limit. More precisely, we prove that solutions of stochastic Navier Stokes equations converge, as the viscosity goes to zero, to solutions of the corresponding stochastic Euler equations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2405 / 2426
页数:22
相关论文
共 50 条
  • [1] Inviscid limit of stochastic damped 2D Navier-Stokes equations
    Bessaih, Hakima
    Ferrario, Benedetta
    NONLINEARITY, 2014, 27 (01) : 1 - 15
  • [2] A KAM Approach to the Inviscid Limit for the 2D Navier-Stokes Equations
    Franzoi, Luca
    Montalto, Riccardo
    ANNALES HENRI POINCARE, 2024, 25 (12): : 5231 - 5275
  • [3] THE INVISCID LIMIT FOR THE 2D NAVIER-STOKES EQUATIONS IN BOUNDED DOMAINS
    Bardos, Claude W.
    Nguyen, Trinh T.
    Nguyen, Toan T.
    Titi, Edriss S.
    KINETIC AND RELATED MODELS, 2022, 15 (03) : 317 - 340
  • [4] ON THE INVISCID LIMIT OF THE NAVIER-STOKES EQUATIONS
    Constantin, Peter
    Kukavica, Igor
    Vicol, Vlad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 3075 - 3090
  • [5] A short remark on inviscid limit of the stochastic Navier-Stokes equations
    Chaudhary, Abhishek
    Vallet, Guy
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [6] LARGE FRICTION LIMIT AND THE INVISCID LIMIT OF 2D NAVIER-STOKES EQUATIONS UNDER NAVIER FRICTION CONDITION
    Kim, Namkwon
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) : 1653 - 1663
  • [7] Dynamics of stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) : 3543 - 3591
  • [8] Anticipating stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) : 1380 - 1408
  • [9] On the inviscid limit of the 2D Navier-Stokes equations with vorticity belonging to BMO-type spaces
    Bernicot, Frederic
    Elgindi, Tarek
    Keraani, Sahbi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 597 - 619
  • [10] Inviscid limit for stochastic Navier-Stokes equations under general initial conditions
    Luongo, Eliseo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 389 : 114 - 149