Size-controlled electron transfer rates determine hydrogen generation efficiency in colloidal Pt-decorated CdS quantum dots

被引:19
作者
Li, Wei [1 ,2 ,3 ,4 ]
Jackel, Frank [1 ,2 ]
机构
[1] Univ Liverpool, Dept Phys, Chadwick Bldg,Peach St, Liverpool L69 7ZF, Merseyside, England
[2] Univ Liverpool, Stephenson Inst Renewable Energy, Chadwick Bldg,Peach St, Liverpool L69 7ZF, Merseyside, England
[3] Aston Univ, Chem Engn & Appl Chem, European Bioenergy Res Inst, Birmingham B4 7ET, W Midlands, England
[4] Aston Univ, Aston Inst Mat Res, Birmingham B4 7ET, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
CHARGE-TRANSFER; SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; H-2; GENERATION; NANOPARTICLES; PHOTOCATALYSIS; DYNAMICS; RELAXATION; HETEROSTRUCTURES; FLUORESCENCE;
D O I
10.1039/c8nr04344b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconducting quantum dots (QDs) have been considered as promising building blocks of solar energy harvesting systems because of size-dependent electronic structures, e.g. QD-metal heterostructures for solar-driven H-2 production. In order to design improved systems, it is crucial to understand size-dependent QD-metal interfacial electron transfer dynamics, picosecond processes in particular. Here, we report that the transfer rates of photogenerated electrons in Pt-decorated CdS QDs can be varied over more than two orders of magnitude by controlling the QD size. In small QDs (2.8 nm diameter), conduction band electrons transfer to Pt sites in an average timescale of approximate to 30 ps, giving a transfer rate of 2.9 x 10(10) s(-1) while in significantly larger particles (4.8 nm diameter) the transfer rates decrease to 1.4 x 10(8) s(-1). We attribute this to the tuning of the electron transfer driving force via the quantum confinement-controlled energetic off-set between the involved electronic states of the QDs and the co-catalyst. The same size-dependent trend is observed in the presence of an electron acceptor in solution. With methyl viologen present, electrons leave the QDs within 1 ps for 2.8 nm QDs while for 4.6 nm QDs this process takes nearly 40 ps. The transfer rates are directly correlated with H-2 generation efficiencies: faster electron transfer leads to higher H-2 generation efficiencies. 2.8 nm QDs display a H-2 generation quantum efficiency of 17.3%, much higher than the 11.4% for their 4.6 nm diameter counterpart. We explain these differences by the fact that slower electron transfer cannot compete as efficiently as faster electron transfer with recombination and other losses.
引用
收藏
页码:16153 / 16158
页数:6
相关论文
共 41 条
  • [1] Quantum confinement controlled solar hydrogen production from hydrogen sulfide using a highly stable CdS0.5Se0.5/CdSe quantum dot-glass nanosystem
    Apte, Sanjay K.
    Garaje, Sunil N.
    Naik, Sonali D.
    Waichal, Rupali P.
    Baeg, Jin-Ook
    Kale, Bharat B.
    [J]. NANOSCALE, 2014, 6 (02) : 908 - 915
  • [2] Delayed Photoelectron Transfer in Pt-Decorated CdS Nanorods under Hydrogen Generation Conditions
    Berr, Maximilian J.
    Vaneski, Aleksandar
    Mauser, Christian
    Fischbach, Stefan
    Susha, Andrei S.
    Rogach, Andrey L.
    Jaeckel, Frank
    Feldmann, Jochen
    [J]. SMALL, 2012, 8 (02) : 291 - 297
  • [3] Quantum Confinement-Tunable Ultrafast Charge Transfer at the PbS Quantum Dot and Phenyl-C61-butyric Acid Methyl Ester Interface
    El-Ballouli, Ala'a O.
    Alarousu, Erkki
    Bernardi, Marco
    Aly, Shawkat M.
    Lagrow, Alec P.
    Bakr, Osman M.
    Mohammed, Omar F.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) : 6952 - 6959
  • [4] Solvents Effects on Charge Transfer from Quantum Dots
    Ellis, Jennifer L.
    Hickstein, Daniel D.
    Schnitzenbaumer, Kyle J.
    Wilker, Molly B.
    Palm, Brett B.
    Jimenez, Jose L.
    Dukovic, Gordana
    Kapteyn, Henry C.
    Murnane, Margaret M.
    Xiong, Wei
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (11) : 3759 - 3762
  • [5] Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems using Molecular Catalysts and Quantum Dots
    Gimbert-Surinach, Carolina
    Albero, Josep
    Stoll, Thibaut
    Fortage, Jerome
    Collomb, Marie-Noelle
    Deronzier, Alain
    Palomares, Emilio
    Llobet, Antoni
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (21) : 7655 - 7661
  • [6] Size-Dependent Electron Transfer from Colloidal PbS Nanocrystals to Fullerene
    Gocalinska, Agnieszka
    Saba, Michele
    Quochi, Francesco
    Marceddu, Marco
    Szendrei, Krisztina
    Gao, Jia
    Loi, Maria A.
    Yarema, Maksym
    Seyrkammer, Robert
    Heiss, Wolfgang
    Mura, Andrea
    Bongiovanni, Giovanni
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (07): : 1149 - 1154
  • [7] Photocatalytic Events of CdSe Quantum Dots in Confined Media. Electrodic Behavior of Coupled Platinum Nanoparticles
    Harris, Clifton
    Kamat, Prashant V.
    [J]. ACS NANO, 2010, 4 (12) : 7321 - 7330
  • [8] Photoinduced ultrafast electron transfer from CdSe quantum dots to re-bipyridyl complexes
    Huang, Jier
    Stockwell, Dave
    Huang, Zhuangqun
    Mohler, Debra L.
    Lian, Tianquan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (17) : 5632 - +
  • [9] Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design
    Kamat, Prashant V.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (05): : 663 - 672
  • [10] Electron and hole relaxation pathways in semiconductor quantum dots
    Klimov, VI
    McBranch, DW
    Leatherdale, CA
    Bawendi, MG
    [J]. PHYSICAL REVIEW B, 1999, 60 (19) : 13740 - 13749