Maximum likelihood estimation of nonnegative trigonometric sum models using a Newton-like algorithm on manifolds

被引:16
作者
Jose Fernandez-Duran, Juan [1 ]
Mercedes Gregorio-Dominguez, Maria [2 ]
机构
[1] Inst Tecnol Autonomo Mexico, Dept Stat, Mexico City 01080, DF, Mexico
[2] Inst Tecnol Autonomo Mexico, Dept Actuarial Sci, Mexico City 01080, DF, Mexico
关键词
Differential geometry; maximum likelihood estimation; Newton algorithm; nonnegative Fourier series; smooth Riemann manifold;
D O I
10.1214/10-EJS587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In Fernandez-Duran [4], a new family of circular distributions based on nonnegative trigonometric sums (NNTS models) is developed. Because the parameter space of this family is the surface of the hypersphere, an efficient Newton-like algorithm on manifolds is generated in order to obtain the maximum likelihood estimates of the parameters
引用
收藏
页码:1402 / 1410
页数:9
相关论文
共 13 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]   Some global optimization problems on Stiefel manifolds [J].
Balogh, J ;
Csendes, T ;
Rapcsák, T .
JOURNAL OF GLOBAL OPTIMIZATION, 2004, 30 (01) :91-101
[3]  
Fejer L., 1915, Journal fur die Reine und Angewandte Mathematik, V146, P53
[4]   Models for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums [J].
Fernandez-Duran, J. J. .
BIOMETRICS, 2007, 63 (02) :579-585
[5]   Circular distributions based on nonnegative trigonometric sums [J].
Fernández-Durán, JJ .
BIOMETRICS, 2004, 60 (02) :499-503
[6]  
FERNANDEZDURAN JJ, 2009, DEC0913 ITAM DEP STA
[7]  
Fisher N.I, 1995, STAT ANAL CIRCULAR D, DOI DOI 10.1017/CBO9780511564345
[8]  
Lange K., 2004, SPRINGER TEXTS STAT
[9]   Optimization algorithms exploiting unitary constraints [J].
Manton, JH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) :635-650
[10]  
Shao J., 2003, MATH STAT, V2nd, DOI DOI 10.1007/B97553