The Geometry of Two-Weight Codes Over Zpm

被引:21
作者
Shi, Minjia [1 ]
Honold, Thomas [2 ]
Sole, Patrick [3 ]
Qiu, Yunzhen [1 ]
Wu, Rongsheng [1 ]
Sepasdar, Zahra [4 ]
机构
[1] Anhui Univ, Minist Educ, Sch Math Sci, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Anhui, Peoples R China
[2] Zhejiang Univ, ZJU UIUC Inst, Haining 314400, Peoples R China
[3] Aix Marseille Univ, CNRS, I2M, Cent Marseille, F-13009 Marseille, France
[4] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad 9177948974, Razavi Khorasan, Iran
基金
中国国家自然科学基金;
关键词
Two-weight code; strongly regular graph; projective Hjelmslev geometry; cap; LINEAR CODES; ONE-WEIGHT; FAMILIES; RINGS;
D O I
10.1109/TIT.2021.3114636
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate fat projective linear codes over Z(pm), m >= 2, with two nonzero homogeneous weights ("two-weight codes"), building on the graph theory approach developed by Delsarte for codes over fields. Our main result is the classification of such codes under the additional assumption that the columns of a generator matrix of the code determine a cap in the projective Hjelmslev geometry PHG(k - 1, Z(pm)). This generalizes a result on projective two weight codes with dual distance at least four (Calderbank, 1982). The proof relies on a careful analysis of a certain strongly regular graph built on the cosets of the dual code, and on an interpretation of its parameters in terms of projective Hjelmslev geometry.
引用
收藏
页码:7769 / 7781
页数:13
相关论文
共 37 条
[1]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[2]   Ring geometries, two-weight codes, and strongly regular graphs [J].
Byrne, Eimear ;
Greferath, Marcus ;
Honold, Thomas .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (01) :1-16
[3]   Properties of codes with two homogeneous weights [J].
Byrne, Eimear ;
Kiermaier, Michael ;
Sneyd, Alison .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) :711-727
[4]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[5]  
CALDERBANK R, 1982, J LOND MATH SOC, V26, P365
[6]  
Cameron PJ., 1991, Designs, Graphs, Codes and Their Links, V22
[7]  
Constantinescu I., 1997, Problems of Information Transmission, V33, P208
[8]  
Delsarte Ph., 1972, Discrete Mathematics, V3, P47, DOI 10.1016/0012-365X(72)90024-6
[9]   Finite-ring combinatorics and MacWilliams' equivalence theorem [J].
Greferath, M ;
Schmidt, SE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (01) :17-28
[10]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319