A FRAMEWORK FOR AN ARTIFICIAL NEURAL NETWORK ENABLED SINGLE PIXEL HYPERSPECTRAL IMAGER

被引:3
作者
Arias, Fernando [1 ,2 ]
Sierra, Heidy [1 ,3 ]
Arzuaga, Emmanuel [1 ,2 ,3 ]
机构
[1] Univ Puerto Rico, Lab Appl Remote Sensing Imaging & Photon, Mayaguez, PR 00682 USA
[2] Univ Puerto Rico, Dept Elect & Comp Engn, Mayaguez, PR 00682 USA
[3] Univ Puerto Rico, Dept Comp Sci & Engn, Mayaguez, PR USA
来源
2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS) | 2019年
基金
美国国家科学基金会;
关键词
hyperspectral imaging; compressive sensing; deep learning; remote sensing;
D O I
10.1109/whispers.2019.8921054
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive Sensing enables improvement of acquisition of a variety of signals in various applications with little to no discernible loss in terms of recovered image quality. The current work proposes a signal processing framework for the acquisition and fast reconstruction of compressively sampled hyperspectral images using an artificial neural network architecture. This ANN-based approach is capable of performing a fast reconstruction by avoiding the requirement of solving a computationally intensive image-specific optimization problem. The proposed framework contributes to advance singlepixel hyperspectral imaging device methodologies, which enable a significant reduction in device mechanical complexity, imaging rate, and cost. Our experiments demonstrate that a hyperspectral image can be reconstructed using only 10% of the samples without compromising classification performance. Specifically, the results show that classification performance of the compressively sampled hyperspectral image recovered using artificial neural networks is equal or higher to that of those obtained using current scanning hyperspectral imaging platforms.
引用
收藏
页数:5
相关论文
共 17 条
  • [1] Arias Fernando, J APPL REMOTE SENSIN
  • [2] Classification Performance of a Block-Compressive Sensing Algorithm for Hyperspectral Data Processing
    Arias, Fernando X.
    Sierra, Heidy
    Arzuaga, Emmanuel
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840
  • [3] Compressive Sensing in Reflectance Confocal Microscopy of Skin Images: A Preliminary Comparative Study
    Arias, Fernando X.
    Sierra, Heidy
    Rajadhyaksha, Milind
    Arzuaga, Emmanuel
    [J]. THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XXIII, 2016, 9713
  • [4] Baumgardner M.F., 2015, 220 BAND AVIRIS HYPE, DOI [DOI 10.4231/R7RX991C, 10.4231/R7RX991C]
  • [5] Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information
    Candès, EJ
    Romberg, J
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) : 489 - 509
  • [6] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [7] Single-pixel imaging via compressive sampling
    Duarte, Marco F.
    Davenport, Mark A.
    Takhar, Dharmpal
    Laska, Jason N.
    Sun, Ting
    Kelly, Kevin F.
    Baraniuk, Richard G.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 83 - 91
  • [8] KULKARNI K, 2016, PROC CVPR IEEE, P449, DOI DOI 10.1109/CVPR.2016.55
  • [9] HYCA: A New Technique for Hyperspectral Compressive Sensing
    Martin, Gabriel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (05): : 2819 - 2831
  • [10] Nunez Maytee Zambrano, 2014, 12 LACCEI LAT AM CAR