An Investigation of Spectral Band Selection for Hyperspectral LiDAR Technique

被引:6
|
作者
Shao, Hui [1 ,2 ]
Chen, Yuwei [2 ,3 ]
Li, Wei [3 ]
Jiang, Changhui [4 ]
Wu, Haohao [3 ]
Chen, Jie [1 ]
Pan, Banglong [1 ]
Hyyppa, Juha [2 ]
机构
[1] Anhui Jianzhu Univ, Sch Elect & Informat Engn, Hefei 230601, Peoples R China
[2] Finnish Geospatial Res Inst, Ctr Excellence Laser Scanning Res, FI-02430 Masala, Finland
[3] Chinese Acad Sci, Key Lab Quantitat Remote Sensing Informat Technol, Beijing 100094, Peoples R China
[4] Hong Kong Polytech Univ, Interdisciplinary Div Aeronaut & Aviat Engn, Kowloon, Hong Kong, Peoples R China
基金
芬兰科学院;
关键词
hyperspectral LiDAR; band selection; classification; inter-class variance; CLASSIFICATION; SYSTEM; FEASIBILITY; INTENSITY; FOREST;
D O I
10.3390/electronics9010148
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral LiDAR (HSL) has been widely discussed in recent years, which attracts increasing attention of the researchers in the field of electronic information technology. With the application of supercontinuum laser source, it is now possible to develop an HSL system, which can collect spectral and spatial information of targets simultaneously. Meanwhile, eye-safety and miniature HSL device with multiple spectral bands are given more priorities in on-site applications. In this paper, we tempt to investigate how to select spectral bands with a selection method. The proposed method consists of three steps: first, the variances among the classes based on hyperspectral feature parameters, termed inter-class variances, are calculated; second, the channels are sorted based on corresponding variances in descending order, and those with the two highest values are adopted as the initial input of classification; finally, the channels are selected successively from the rest of the sorted sequence until the classification accuracy reaches 100%. To test the performance of the proposed method, we collect 91/71-channel hyperspectral measurements of four different categories of materials with 5 nm spectral resolution using an acousto-optic tunable filter (AOTF) based HSL. Experimental results demonstrate that the proposed method could achieve higher classification accuracy than a random band selection method with different classifiers (naive Bayes (NB) and support vector machine (SVM)) regardless of classification feature parameters (echo maximum and reflectance). To reach 100% accuracy, it demands 8-9 channels on average by echo maximum and 4-5 channels on average by reflectance based on NB classifier; these figures are 3-4 by echo maximum and 2-3 by reflectance with SVM classifier. The proposed method can complete classification task much faster than the random selection method. We further confirm the specific channels for the classification of different materials, and find that the optimal channels vary with different materials. The experimental results prove that the optimal band selection of HSL system for classification is reliable.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Hyperspectral Band Selection for Spectral-Spatial Anomaly Detection
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    Yang, Jian
    Chang, Chein-, I
    Li, Zhen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3426 - 3436
  • [32] Level set hyperspectral image segmentation using spectral information divergence-based best band selection
    Ball, John E.
    West, Terrance
    Prasad, Saurabh
    Bruce, Lori Mann
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 4053 - 4056
  • [33] NEURAL NETWORK PRUNING FOR HYPERSPECTRAL IMAGE BAND SELECTION
    Wang, Qixiong
    Luo, Xiaoyan
    Li, Sen
    Yin, Jihao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2041 - 2044
  • [34] A Structural Subspace Clustering Approach for Hyperspectral Band Selection
    Huang, Shaoguang
    Zhang, Hongyan
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] UNSUPERVISED HYPERSPECTRAL BAND SELECTION USING PARALLEL PROCESSING
    Yang, He
    Du, Qian
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3505 - 3508
  • [36] Hyperspectral band selection based on metaheuristic optimization approach
    Sawant, Shrutika
    Manoharan, Prabukumar
    INFRARED PHYSICS & TECHNOLOGY, 2020, 107
  • [37] Simulated annealing band selection approach for hyperspectral imagery
    Chang, Yang-Lang
    Fang, Jyh-Perng
    Hsu, Wei-Lieh
    Chang, Lena
    Chang, Wen-Yen
    JOURNAL OF APPLIED REMOTE SENSING, 2010, 4
  • [38] COMBINATION OF BAND SELECTION AND WEIGHTED SPATIAL-SPECTRAL METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Xiangjuan
    Mountrakis, Giorgos
    Zhao, ChuanYuan
    Zhang, Feng
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4685 - 4688
  • [39] Structural graph learning method for hyperspectral band selection
    Li, Shuying
    Liu, Zhe
    Fang, Long
    Li, Qiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (18) : 6719 - 6743
  • [40] GRAPH LEARNING BASED AUTOENCODER FOR HYPERSPECTRAL BAND SELECTION
    Zhang, Yongshan
    Wang, Xinxin
    Wang, Zhenyu
    Jiang, Xinwei
    Zhou, Yicong
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2794 - 2798