Spatiotemporal trajectory clustering: A clustering algorithm for spatiotemporal data

被引:19
作者
Ansari, Mohd Yousuf [1 ]
Mainuddin [2 ]
Ahmad, Amir [3 ]
Bhushan, Gopal [1 ]
机构
[1] Def R&D Org DRDO, Def Sci Informat & Documentat Ctr DESIDOC, Metcalfe House, Delhi 110054, India
[2] Jamia Millia Islamia, Dept Elect & Commun, Fac Engn & Technol, New Delhi 110025, India
[3] United Arab Emirates Univ, Coll Informat Technol, Al Ain, U Arab Emirates
关键词
Density-based clustering; Trajectory clustering; Spatiotemporal data; Co-location events; VALIDATION;
D O I
10.1016/j.eswa.2021.115048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial technologies generate large datasets quickly and continuously. The purpose of this study is to develop a clustering algorithm to mine spatiotemporal co-location events in trajectory datasets. We present a spatiotemporal algorithm for sub-trajectory clustering that divides a trajectory into line segments and groups theses subtrajectories on the basis of both spatial and temporal aspects by extending DBSCAN (Density Based Spatial Clustering of Applications with Noise) algorithm. We adopt the concepts of entropy and silhouette index to validate the clusters. Experiments conducted on two different real datasets demonstrate that the proposed clustering algorithm effectively discovers optimal clusters. Furthermore, experimental results reveal hidden and useful clusters and demonstrate that the proposed algorithm outperforms the CorClustST (Correlation-based Clustering of Big Spatiotemporal Datasets), and the ST-OPTICS (Spatiotemporal-Ordering Points to Identify Clustering Structure) algorithms.
引用
收藏
页数:21
相关论文
共 40 条
[1]   Development and validation of OPTICS based spatio-temporal clustering technique [J].
Agrawal, K. P. ;
Garg, Sanjay ;
Sharma, Shashikant ;
Patel, Pinkal .
INFORMATION SCIENCES, 2016, 369 :388-401
[2]   A k-mean clustering algorithm for mixed numeric and categorical data [J].
Ahmad, Amir ;
Dey, Lipika .
DATA & KNOWLEDGE ENGINEERING, 2007, 63 (02) :503-527
[3]  
Alon J, 2003, PROC CVPR IEEE, P375
[4]  
Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
[5]  
[Anonymous], 2007, P 15 ANN ACM INT S A
[6]  
[Anonymous], 2007, P ACM SIGMOD INT C M, DOI DOI 10.1145/1247480.1247546
[7]  
[Anonymous], 2006, Introduction to data mining
[8]  
[Anonymous], 1987, USGS PROF PAP
[9]   Spatiotemporal clustering: a review [J].
Ansari, Mohd Yousuf ;
Ahmad, Amir ;
Khan, Shehroz S. ;
Bhushan, Gopal ;
Mainuddin .
ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (04) :2381-2423
[10]   A general methodology for n-dimensional trajectory clustering [J].
Bermingham, Luke ;
Lee, Ickjai .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (21) :7573-7581