A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates

被引:73
|
作者
Nguyen, Kien T. [1 ]
Thai, Tai H. [2 ]
Vo, Thuc P. [3 ]
机构
[1] Univ Tech Educ, Fac Civil Engn & Appl Mech, Ho Chi Minh City, Vietnam
[2] Univ New S Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[3] Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
来源
STEEL AND COMPOSITE STRUCTURES | 2015年 / 18卷 / 01期
关键词
functionally graded sandwich plates; bending; buckling; vibration; STATIC ANALYSIS; COMPREHENSIVE ANALYSIS; COMPOSITE; STABILITY; EFFICIENT;
D O I
10.12989/scs.2015.18.1.091
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates is presented in this paper. It contains only four unknowns, accounts for a hyperbolic distribution of transverse shear stress and satisfies the traction free boundary conditions. Equations of motion are derived from Hamilton's principle. The Navier-type and finite element solutions are derived for plate with simply-supported and various boundary conditions, respectively. Numerical examples are presented for functionally graded sandwich plates with homogeneous hardcore and softcore to verify the validity of the developed theory. It is observed that the present theory with four unknowns predicts the response accurately and efficiently.
引用
收藏
页码:91 / 120
页数:30
相关论文
共 50 条
  • [1] Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory
    Trung-Kien Nguyen
    Nguyen, T. Truong-Phong
    Vo, Thuc P.
    Huu-Tai Thai
    COMPOSITES PART B-ENGINEERING, 2015, 76 : 273 - 285
  • [2] A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates
    Thai, Huu-Tai
    Kim, Seung-Eock
    COMPOSITE STRUCTURES, 2013, 96 : 165 - 173
  • [3] Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory
    Zenkour, A. M.
    Aljadani, M. H.
    ADVANCES IN AIRCRAFT AND SPACECRAFT SCIENCE, 2018, 5 (06): : 615 - 632
  • [4] A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams
    Trung-Kien Nguyen
    Ba-Duy Nguyen
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2015, 17 (06) : 613 - 631
  • [5] A novel general higher-order shear deformation theory for static, vibration and thermal buckling analysis of the functionally graded plates
    Nguyen, Trung-Kien
    Thai, Huu-Tai
    Vo, Thuc P.
    JOURNAL OF THERMAL STRESSES, 2020, 44 (03) : 377 - 394
  • [6] Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory
    Abdelhak, Z.
    Hadji, L.
    Khelifa, Z.
    Daouadji, T. Hassaine
    Bedia, E. A. Adda
    WIND AND STRUCTURES, 2016, 22 (03) : 291 - 305
  • [7] Numerical modeling of bending, buckling, and vibration of functionally graded beams by using a higher-order shear deformation theory
    Hebbar, Nabil
    Hebbar, Imene
    Ouinas, Djamel
    Bourada, Mohamed
    FRATTURA ED INTEGRITA STRUTTURALE, 2020, 14 (52): : 230 - 246
  • [8] FREE VIBRATION OF FUNCTIONALLY GRADED PLATES WITH A HIGHER-ORDER SHEAR AND NORMAL DEFORMATION THEORY
    Jha, D. K.
    Kant, Tarun
    Singh, R. K.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2013, 13 (01)
  • [9] A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates
    Tounsi, Abdelouahed
    Houari, Mohammed Sid Ahmed
    Benyoucef, Samir
    Bedia, El Abbas Adda
    AEROSPACE SCIENCE AND TECHNOLOGY, 2013, 24 (01) : 209 - 220
  • [10] Stochastic vibration and buckling analysis of functionally graded microplates with a unified higher-order shear deformation theory
    Tran, Van-Thien
    Nguyen, Trung-Kien
    Nguyen, Phong T. T.
    Vo, Thuc P.
    THIN-WALLED STRUCTURES, 2022, 177