Optimal control of obstacle problems: Existence of Lagrange multipliers

被引:22
作者
Bergounioux, M
Mignot, F
机构
[1] Univ Orleans, Dept Math, UMR 6628, F-45067 Orleans 2, France
[2] Univ Paris Sud, Math Lab, F-91405 Orsay, France
关键词
variational inequalities; optimal control; Lagrange multiplier; obstacle problem;
D O I
10.1051/cocv:2000101
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study first order optimality systems for the control of a system governed by a variational inequality and deal with Lagrange multipliers: is it possible to associate to each point-wise constraint a multiplier to get a "good" optimality system? We give positive and negative answers for the finite and infinite dimensional cases. These results are compared with the previous ones got by penalization or differentiation.
引用
收藏
页码:45 / 70
页数:26
相关论文
共 20 条
[1]   Optimal control of the obstacle for an elliptic variational inequality [J].
Adams, DR ;
Lenhart, SM ;
Yong, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1998, 38 (02) :121-140
[2]  
Barbu V., 1984, OPTIMAL CONTROL VARI, DOI DOI 10.1007/BF01442167
[3]   AUGMENTED LAGRANGIAN METHOD FOR DISTRIBUTED OPTIMAL-CONTROL PROBLEMS WITH STATE CONSTRAINTS [J].
BERGOUNIOUX, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 78 (03) :493-521
[4]  
Bergounioux M, 1997, APPL MATH OPT, V36, P147
[5]   Pontryagin maximum principle for optimal control of variational inequalities [J].
Bergounioux, M ;
Zidani, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1273-1290
[6]   Optimal control of problems governed by abstract elliptic variational inequalities with state constraints [J].
Bergounioux, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (01) :273-289
[7]  
BERGOUNIOUX M, 1998, 9815 U ORL
[8]  
Bergounioux M., 1998, J Convex Anal, V5, P329
[9]   OPTIMAL-CONTROL OF A SIGNORINI PROBLEM [J].
BERMUDEZ, A ;
SAGUEZ, C .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (03) :576-582
[10]  
BERMUDEZ A, 1984, RES NOTES MATH, V121, P478