Realization of high performance polycarbonate-based Li polymer batteries

被引:85
作者
Sun, Bing [1 ]
Mindemark, Jonas [1 ]
Edstrom, Kristina [1 ]
Brandell, Daniel [1 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, S-75121 Uppsala, Sweden
关键词
Polymer electrolyte; Polycarbonate; Trimethylene carbonate; Li-ion battery; Interfaces; LITHIUM METAL-ELECTRODE; ION; SALT; INTERFACE; CARBONATE;
D O I
10.1016/j.elecom.2015.01.020
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work describes effective approaches to achieve high cell performance of solid-state Li polymer batteries based on high-molecular-weight poly(trimethylene carbonate) (PTMC). The origin of a gradual capacity increase observed during passive storage and/or active cycling in LiFePO4 vertical bar PTMCxLiTFSI vertical bar Li cells was investigated by SEM/EDX, indicating an obvious penetration of the polymer electrolyte through the porous composite electrode at elevated temperatures. Refining the interfacial contacts at the electrode/electrolyte interface by adding PTMC oligomer as an interfacial mediator led to significant capacity enhancement already during initial cycles. Optimized cell performance was achieved through this method rather than other approaches, such as casting electrolyte directly onto the electrode and using a polyether oligomer. Successful long-term cycling stability and rate capability tests also resulted from the suggested strategy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 74
页数:4
相关论文
共 28 条
[1]   The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes [J].
Andersson, AM ;
Herstedt, M ;
Bishop, AG ;
Edström, K .
ELECTROCHIMICA ACTA, 2002, 47 (12) :1885-1898
[2]   PEO-LiN(SO2CF2CF3)2 polymer electrolytes -: I.: XRD, DSC, and ionic conductivity characterization [J].
Appetecchi, GB ;
Henderson, W ;
Villano, P ;
Berrettoni, M ;
Passerini, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1171-A1178
[3]   Composite polymer electrolytes with improved lithium metal electrode interfacial properties - I. Electrochemical properties of dry PEO-LiX systems [J].
Appetecchi, GB ;
Croce, F ;
Dautzenberg, G ;
Mastragostino, M ;
Ronci, F ;
Scrosati, B ;
Soavi, F ;
Zanelli, A ;
Alessandrini, F ;
Prosini, PP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (12) :4126-4132
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[6]   Ceramic and polymeric solid electrolytes for lithium-ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4554-4569
[7]   Polymer Electrolytes [J].
Hallinan, Daniel T., Jr. ;
Balsara, Nitash P. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 43, 2013, 43 :503-+
[8]   Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties [J].
Han, Hong-Bo ;
Zhou, Si-Si ;
Zhang, Dai-Jun ;
Feng, Shao-Wei ;
Li, Li-Fei ;
Liu, Kai ;
Feng, Wen-Fang ;
Nie, Jin ;
Li, Hong ;
Huang, Xue-Jie ;
Armand, Michel ;
Zhou, Zhi-Bin .
JOURNAL OF POWER SOURCES, 2011, 196 (07) :3623-3632
[9]   PHASE-DIAGRAMS AND CONDUCTIVITY BEHAVIOR OF POLY(ETHYLENE OXIDE) MOLTEN-SALT RUBBERY ELECTROLYTES [J].
LASCAUD, S ;
PERRIER, M ;
VALLEE, A ;
BESNER, S ;
PRUDHOMME, J ;
ARMAND, M .
MACROMOLECULES, 1994, 27 (25) :7469-7477
[10]   Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes [J].
Lee, JT ;
Lin, YW ;
Jan, YS .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :244-248