Robust Cylindrical Panorama Stitching for Low-Texture Scenes Based on Image Alignment Using Deep Learning and Iterative Optimization

被引:10
作者
Kang, Lai [1 ]
Wei, Yingmei [1 ]
Jiang, Jie [1 ]
Xie, Yuxiang [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
cylindrical panorama; low-texture environments; convolutional neural network (CNN); robust image alignment; sub-pixel optimization;
D O I
10.3390/s19235310
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Cylindrical panorama stitching is able to generate high resolution images of a scene with a wide field-of-view (FOV), making it a useful scene representation for applications like environmental sensing and robot localization. Traditional image stitching methods based on hand-crafted features are effective for constructing a cylindrical panorama from a sequence of images in the case when there are sufficient reliable features in the scene. However, these methods are unable to handle low-texture environments where no reliable feature correspondence can be established. This paper proposes a novel two-step image alignment method based on deep learning and iterative optimization to address the above issue. In particular, a light-weight end-to-end trainable convolutional neural network (CNN) architecture called ShiftNet is proposed to estimate the initial shifts between images, which is further optimized in a sub-pixel refinement procedure based on a specified camera motion model. Extensive experiments on a synthetic dataset, rendered photo-realistic images, and real images were carried out to evaluate the performance of our proposed method. Both qualitative and quantitative experimental results demonstrate that cylindrical panorama stitching based on our proposed image alignment method leads to significant improvements over traditional feature based methods and recent deep learning based methods for challenging low-texture environments.
引用
收藏
页数:22
相关论文
共 44 条
[1]   Learning to See by Moving [J].
Agrawal, Pulkit ;
Carreira, Joao ;
Malik, Jitendra .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :37-45
[2]   Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces [J].
Alcantarilla, Pablo F. ;
Nuevo, Jesus ;
Bartoli, Adrien .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
[3]   KAZE Features [J].
Alcantarilla, Pablo Fernandez ;
Bartoli, Adrien ;
Davison, Andrew J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :214-227
[4]  
[Anonymous], 2014, PROC IEEE C COMPUTER
[5]  
[Anonymous], 2018, P EUR C COMP VIS ECC
[6]  
[Anonymous], METHOD STOCHASTIC OP
[7]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[8]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[9]   Automatic panoramic image stitching using invariant features [J].
Brown, Matthew ;
Lowe, David G. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 74 (01) :59-73
[10]   BRIEF: Binary Robust Independent Elementary Features [J].
Calonder, Michael ;
Lepetit, Vincent ;
Strecha, Christoph ;
Fua, Pascal .
COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 :778-792