Design and realization of flexible droplet-based lab-on-a-chip devices From theory to practice

被引:0
作者
Fink, Gerold [1 ]
Hamidovic, Medina [2 ]
Springer, Andreas [2 ]
Wille, Robert [1 ]
Haselmayr, Werner [2 ]
机构
[1] Johannes Kepler Univ Linz, Inst Integrated Circuits, Altenberger Str 69, A-4040 Linz, Austria
[2] Inst Commun Engn & RFSystems, Altenberger Str 69, A-4040 Linz, Austria
来源
ELEKTROTECHNIK UND INFORMATIONSTECHNIK | 2020年 / 137卷 / 03期
关键词
droplet-based microfluidics; lab-on-a-chip; microfluidic networks; GENERATION; SYSTEMS; NETWORK;
D O I
10.1007/s00502-020-00790-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article provides an overview on the emerging field of droplet-based microfluidic networks. In such networks, droplets i.e., encapsulating biochemical samples can be adaptively transported via microchannels through different operations for particular experiments. This approach is particularly promising for the next generation of lab-on-a-chip devices, which should support more complex operations and more flexibility. We give an accessible introduction to droplet-based microfluidics and describe the principles, of microfluidic switches, which are the main components in microfluidic networks. Based on these principles we present the addressing schemes for microfluidic bus networks. Since the design of microfluidic networks is a rather complex task, which requires the consideration of a huge number of physical parameters, we introduce design automation methods and simulation tools. Finally, we present a method for the precise generation of individual droplets, which enables the practical realization of microfluidic networks. Moreover, we show the latest experimental results on droplet generation and switching.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 37 条
  • [1] [Anonymous], 2018, P EUR C MICR
  • [2] Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing
    Babahosseini, Hesam
    Misteli, Tom
    DeVoe, Don L.
    [J]. LAB ON A CHIP, 2019, 19 (03) : 493 - 502
  • [3] Bruus H., 2007, Theoretical Microfluidics
  • [4] Microfluidic networking: Switching multidroplet frames to improve signaling overhead
    Castorina, G.
    Reno, M.
    Galluccio, L.
    Lombardo, A.
    [J]. NANO COMMUNICATION NETWORKS, 2017, 14 : 48 - 59
  • [5] A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing
    Chen, Xiaoming
    Ren, Carolyn L.
    [J]. RSC ADVANCES, 2017, 7 (27): : 16738 - 16750
  • [6] Simple modular systems for generation of droplets on demand
    Churski, Krzysztof
    Nowacki, Michal
    Korczyk, Piotr M.
    Garstecki, Piotr
    [J]. LAB ON A CHIP, 2013, 13 (18) : 3689 - 3697
  • [7] Microfluidic bypass for efficient passive regulation of droplet traffic at a junction
    Cristobal, Galder
    Benoit, Jean-Philippe
    Joanicot, Mathieu
    Ajdari, Armand
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (03)
  • [8] Communications and Switching in Microfluidic Systems: Pure Hydrodynamic Control for Networking Labs-on-a-Chip
    De Leo, E.
    Donvito, L.
    Galluccio, L.
    Lombardo, A.
    Morabito, G.
    Zanoli, L. M.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (11) : 4663 - 4677
  • [9] De Leo E., 2012, Nano Communication Networks, V3, P217, DOI DOI 10.1016/j.nancom.2012.09.007
  • [10] Lab-on-a-chip: microfluidics in drug discovery
    Dittrich, PS
    Manz, A
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2006, 5 (03) : 210 - 218