On Some New Inequalities of Hermite-Hadamard Midpoint and Trapezoid Type for Preinvex Functions in p,q-Calculus

被引:7
作者
Sial, Ifra Bashir [1 ]
Ali, Muhammad Aamir [2 ]
Murtaza, Ghulam [3 ]
Ntouyas, Sotiris K. [4 ,5 ]
Soontharanon, Jarunee [6 ]
Sitthiwirattham, Thanin [7 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] Univ Management & Technol, Dept Math, Lahore 54700, Pakistan
[4] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[6] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[7] Suan Dusit Univ, Fac Sci & Technol, Math Dept, Bangkok 10300, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
Hermite-Hadamard inequality; (p; q)-integral; post quantum calculus; convex function; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.3390/sym13101864
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we establish some new Hermite-Hadamard type inequalities for preinvex functions and left-right estimates of newly established inequalities for p,q-differentiable preinvex functions in the context of p,q-calculus. We also show that the results established in this paper are generalizations of comparable results in the literature of integral inequalities. Analytic inequalities of this nature and especially the techniques involved have applications in various areas in which symmetry plays a prominent role.
引用
收藏
页数:18
相关论文
共 59 条
  • [51] Sadjang PN, 2018, RESULTS MATH, V73, DOI 10.1007/s00025-018-0783-z
  • [52] Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus
    Sitho, Surang
    Ali, Muhammad Aamir
    Budak, Huseyin
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. MATHEMATICS, 2021, 9 (14)
  • [53] Some Hermite-Hadamard type inequalities for generalized h-preinvex function via local fractional integrals and their applications
    Sun, Wenbing
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [54] Quantum calculus on finite intervals and applications to impulsive difference equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [55] Tunc M., 2016, RGMIA Res. Rep. Coll, V19, P95
  • [56] Some New Hermite-Hadamard and Related Inequalities for Convex Functions via (p,q)-Integral
    Vivas-Cortez, Miguel
    Ali, Muhammad Aamir
    Budak, Huseyin
    Kalsoom, Humaira
    Agarwal, Praveen
    [J]. ENTROPY, 2021, 23 (07)
  • [57] Some generalized Hermite-Hadamard-Fejer inequality for convex functions
    Vivas-Cortez, Miguel
    Korus, Peter
    Napoles Valdes, Juan E.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [58] Some New Newton's Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus
    Vivas-Cortez, Miguel
    Aamir Ali, Muhammad
    Kashuri, Artion
    Bashir Sial, Ifra
    Zhang, Zhiyue
    [J]. SYMMETRY-BASEL, 2020, 12 (09):
  • [59] PRE-INVEX FUNCTIONS IN MULTIPLE OBJECTIVE OPTIMIZATION
    WEIR, T
    MOND, B
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 136 (01) : 29 - 38