Novel co-estimation strategy based on forgetting factor dual particle filter algorithm for the state of charge and state of health of the lithium-ion battery

被引:19
|
作者
Ren, Pu [1 ]
Wang, Shunli [1 ]
Huang, Junhan [1 ]
Chen, Xianpei [1 ]
He, Mingfang [1 ]
Cao, Wen [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
battery management system; capacity fading; forgetting factor dual particle filter; lithium-ion battery; second-order RC equivalent circuit; state of charge; state of health;
D O I
10.1002/er.7230
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For the battery management system, accurate estimation of the state of charge and state of health is of great significance. Herein, the ternary Li-ion battery is taken as the research object; the second-order resistor-capacitor (RC) equivalent circuit is taken advantage of to characterize the battery performance. A method for calculating the state of health of Li-ion batteries based on capacity fading was established. A novel forgetting factor dual particle filter algorithm is proposed for co-estimation of the state of charge and state of health by combining the forgetting factor and the particle filter algorithm. The state of charge and state of health of Li-ion batteries under Beijing Bus Dynamic Stress Test conditions are evaluated. In the state of charge estimation, the maximum error, mean absolute error, and root mean square error is 1.1395%, 0.4916%, and 0.5145% in Beijing Bus Dynamic Stress Test condition, 1.8125%, 0.6329%, and 0.7955% in Dynamic Stress Test condition, compared with the extended Kalman filter, unscented Kalman filter, and particle filter algorithms, all reduced obviously. In the state of health estimation, compared with the Random Forest and adaptive dual extended Kalman filter-based fuzzy inference system, the mean execution time and convergence time are 11.14 seconds and 0.44 second in Dynamic Stress Test condition and 15.17 seconds and 0.63 second in Beijing Bus Dynamic Stress Test condition; the results show lower computation complexity and faster convergence speed, which play an important role in promoting the further application of lithium-ion batteries. Novelty Statement A new forgetting factor dual particle filter algorithm is proposed to realize the co-estimation the battery state of charge and state of health. The capacity and the state of health were estimated for Dynamic Stress Test and Beijing Bus Dynamic Stress Test conditions, respectively, and the estimation results of the two common conditions were analyzed. SOC estimator is impressive for its high accuracy and quick convergence. The estimated SOH information has better convergence performance and shorter running time.
引用
收藏
页码:1094 / 1107
页数:14
相关论文
共 50 条
  • [41] Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model
    Feng, Fei
    Teng, Sangli
    Liu, Kailong
    Xie, Jiale
    Xie, Yi
    Liu, Bo
    Li, Kexin
    JOURNAL OF POWER SOURCES, 2020, 455
  • [42] Estimation of Lithium-Ion Battery State of Charge for Electric Vehicles Based on Dual Extended Kalman Filter
    Fang, Yu
    Xiong, Rui
    Wang, Jun
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 574 - 579
  • [43] An Immune Genetic Extended Kalman Particle Filter approach on state of charge estimation for lithium-ion battery
    Zhengxin, Jiang
    Qin, Shi
    Yujiang, Wei
    Hanlin, Wei
    Bingzhao, Gao
    Lin, He
    ENERGY, 2021, 230
  • [44] A hybrid algorithm based on beluga whale optimization-forgetting factor recursive least square and improved particle filter for the state of charge estimation of lithium-ion batteries
    Xianfeng Shen
    Shunli Wang
    Chunmei Yu
    Chuangshi Qi
    Zehao Li
    Carlos Fernandez
    Ionics, 2023, 29 : 4351 - 4363
  • [45] Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order model with multi-innovations unscented Kalman filter method
    Ma, Lili
    Xu, Yonghong
    Zhang, Hongguang
    Yang, Fubin
    Wang, Xu
    Li, Cheng
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [46] A hybrid algorithm based on beluga whale optimization-forgetting factor recursive least square and improved particle filter for the state of charge estimation of lithium-ion batteries
    Shen, Xianfeng
    Wang, Shunli
    Yu, Chunmei
    Qi, Chuangshi
    Li, Zehao
    Fernandez, Carlos
    IONICS, 2023, 29 (10) : 4351 - 4363
  • [47] A Novel State-of-Health Estimation for Lithium-Ion Battery via Unscented Kalman Filter and Improved Unscented Particle Filter
    Zhu, Feng
    Fu, Jingqi
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25449 - 25456
  • [48] Fast Estimation of State of Charge for Lithium-ion Battery
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    Chen, Hong-Chou
    Wu, Shing-Lih
    Chen, Liang-Rui
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 284 - 287
  • [49] A novel fuzzy adaptive cubature Kalman filtering method for the state of charge and state of energy co-estimation of lithium-ion batteries
    Yang, Xiao
    Wang, Shunli
    Xu, Wenhua
    Qiao, Jialu
    Yu, Chunmei
    Takyi-Aninakwa, Paul
    Jin, Siyu
    ELECTROCHIMICA ACTA, 2022, 415
  • [50] Improved Algorithm Based on AEKF for State of Charge Estimation of Lithium-ion Battery
    Yuzhen Jin
    Chenglong Su
    Shichang Luo
    International Journal of Automotive Technology, 2022, 23 : 1003 - 1011