Novel co-estimation strategy based on forgetting factor dual particle filter algorithm for the state of charge and state of health of the lithium-ion battery

被引:19
|
作者
Ren, Pu [1 ]
Wang, Shunli [1 ]
Huang, Junhan [1 ]
Chen, Xianpei [1 ]
He, Mingfang [1 ]
Cao, Wen [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
battery management system; capacity fading; forgetting factor dual particle filter; lithium-ion battery; second-order RC equivalent circuit; state of charge; state of health;
D O I
10.1002/er.7230
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For the battery management system, accurate estimation of the state of charge and state of health is of great significance. Herein, the ternary Li-ion battery is taken as the research object; the second-order resistor-capacitor (RC) equivalent circuit is taken advantage of to characterize the battery performance. A method for calculating the state of health of Li-ion batteries based on capacity fading was established. A novel forgetting factor dual particle filter algorithm is proposed for co-estimation of the state of charge and state of health by combining the forgetting factor and the particle filter algorithm. The state of charge and state of health of Li-ion batteries under Beijing Bus Dynamic Stress Test conditions are evaluated. In the state of charge estimation, the maximum error, mean absolute error, and root mean square error is 1.1395%, 0.4916%, and 0.5145% in Beijing Bus Dynamic Stress Test condition, 1.8125%, 0.6329%, and 0.7955% in Dynamic Stress Test condition, compared with the extended Kalman filter, unscented Kalman filter, and particle filter algorithms, all reduced obviously. In the state of health estimation, compared with the Random Forest and adaptive dual extended Kalman filter-based fuzzy inference system, the mean execution time and convergence time are 11.14 seconds and 0.44 second in Dynamic Stress Test condition and 15.17 seconds and 0.63 second in Beijing Bus Dynamic Stress Test condition; the results show lower computation complexity and faster convergence speed, which play an important role in promoting the further application of lithium-ion batteries. Novelty Statement A new forgetting factor dual particle filter algorithm is proposed to realize the co-estimation the battery state of charge and state of health. The capacity and the state of health were estimated for Dynamic Stress Test and Beijing Bus Dynamic Stress Test conditions, respectively, and the estimation results of the two common conditions were analyzed. SOC estimator is impressive for its high accuracy and quick convergence. The estimated SOH information has better convergence performance and shorter running time.
引用
收藏
页码:1094 / 1107
页数:14
相关论文
共 50 条
  • [31] State of charge estimation of lithium-ion battery based on improved forgetting factor recursive least squares-extended Kalman filter joint algorithm
    Ge, Caian
    Zheng, Yanping
    Yu, Yang
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [32] A method for state of charge and state of health estimation of lithium-ion battery based on adaptive unscented Kalman filter
    Liu, Shulin
    Dong, Xia
    Yu, Xiaodong
    Ren, Xiaoqing
    Zhang, Jinfeng
    Zhu, Rui
    ENERGY REPORTS, 2022, 8 : 426 - 436
  • [33] Co-estimation of state of charge and state of health for 48 V battery system based on cubature Kalman filter and H-infinity
    Ning, Zhansheng
    Deng, Zhongwei
    Li, Jinwen
    Liu, Hongao
    Guo, Wenchao
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [34] Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter
    Xu, Wei
    Xu, Jinli
    Yan, Xiaofeng
    JOURNAL OF POWER ELECTRONICS, 2020, 20 (01) : 292 - 307
  • [35] Lithium-ion battery state of charge estimation based on a robust H∞ filter
    Pan F.-W.
    Gong D.-L.
    Gao Y.
    Kou Y.-L.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (05): : 693 - 701
  • [36] Lithium-ion battery state-of-charge estimation based on a dual extended Kalman filter and BPNN correction
    Xing, Likun
    Ling, Liuyi
    Wu, Xianyuan
    CONNECTION SCIENCE, 2022, 34 (01) : 2332 - 2363
  • [37] Co-estimation for capacity and state of charge for lithium-ion batteries using improved adaptive extended Kalman filter
    Nian, Peng
    Shuzhi, Zhang
    Xiongwen, Zhang
    JOURNAL OF ENERGY STORAGE, 2021, 40
  • [38] State of charge estimation of lithium-ion battery based on improved adaptive boosting algorithm
    Zhao, Xiaobo
    Jung, Seunghun
    Wang, Biao
    Xuan, Dongji
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [39] Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter
    Wei Xu
    Jinli Xu
    Xiaofeng Yan
    Journal of Power Electronics, 2020, 20 : 292 - 307
  • [40] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863