Novel co-estimation strategy based on forgetting factor dual particle filter algorithm for the state of charge and state of health of the lithium-ion battery

被引:19
|
作者
Ren, Pu [1 ]
Wang, Shunli [1 ]
Huang, Junhan [1 ]
Chen, Xianpei [1 ]
He, Mingfang [1 ]
Cao, Wen [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
battery management system; capacity fading; forgetting factor dual particle filter; lithium-ion battery; second-order RC equivalent circuit; state of charge; state of health;
D O I
10.1002/er.7230
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For the battery management system, accurate estimation of the state of charge and state of health is of great significance. Herein, the ternary Li-ion battery is taken as the research object; the second-order resistor-capacitor (RC) equivalent circuit is taken advantage of to characterize the battery performance. A method for calculating the state of health of Li-ion batteries based on capacity fading was established. A novel forgetting factor dual particle filter algorithm is proposed for co-estimation of the state of charge and state of health by combining the forgetting factor and the particle filter algorithm. The state of charge and state of health of Li-ion batteries under Beijing Bus Dynamic Stress Test conditions are evaluated. In the state of charge estimation, the maximum error, mean absolute error, and root mean square error is 1.1395%, 0.4916%, and 0.5145% in Beijing Bus Dynamic Stress Test condition, 1.8125%, 0.6329%, and 0.7955% in Dynamic Stress Test condition, compared with the extended Kalman filter, unscented Kalman filter, and particle filter algorithms, all reduced obviously. In the state of health estimation, compared with the Random Forest and adaptive dual extended Kalman filter-based fuzzy inference system, the mean execution time and convergence time are 11.14 seconds and 0.44 second in Dynamic Stress Test condition and 15.17 seconds and 0.63 second in Beijing Bus Dynamic Stress Test condition; the results show lower computation complexity and faster convergence speed, which play an important role in promoting the further application of lithium-ion batteries. Novelty Statement A new forgetting factor dual particle filter algorithm is proposed to realize the co-estimation the battery state of charge and state of health. The capacity and the state of health were estimated for Dynamic Stress Test and Beijing Bus Dynamic Stress Test conditions, respectively, and the estimation results of the two common conditions were analyzed. SOC estimator is impressive for its high accuracy and quick convergence. The estimated SOH information has better convergence performance and shorter running time.
引用
收藏
页码:1094 / 1107
页数:14
相关论文
共 50 条
  • [21] State of Charge and State of Health Estimation of Lithium-Ion Battery Packs With Inconsistent Internal Parameters Using Dual Extended Kalman Filter
    Yang, Fan
    Xu, Yuxuan
    Su, Lei
    Yang, Zhichun
    Feng, Yu
    Zhang, Cheng
    Shao, Tao
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (01)
  • [22] Combined State of Charge and State of Energy Estimation of Lithium-Ion Battery Using Dual Forgetting Factor-Based Adaptive Extended Kalman Filter for Electric Vehicle Applications
    Shrivastava, Prashant
    Kok Soon, Tey
    Bin Idris, Mohd Yamani Idna
    Mekhilef, Saad
    Adnan, Syed Bahari Ramadzan Syed
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (02) : 1200 - 1215
  • [23] Cloud-Based Deep Learning for Co-Estimation of Battery State of Charge and State of Health
    Shi, Dapai
    Zhao, Jingyuan
    Wang, Zhenghong
    Zhao, Heng
    Eze, Chika
    Wang, Junbin
    Lian, Yubo
    Burke, Andrew F.
    ENERGIES, 2023, 16 (09)
  • [24] Co-Estimation of State-of-Charge and State-of-Health for High-Capacity Lithium-Ion Batteries
    Xiong, Ran
    Wang, Shunli
    Feng, Fei
    Yu, Chunmei
    Fan, Yongcun
    Cao, Wen
    Fernandez, Carlos
    BATTERIES-BASEL, 2023, 9 (10):
  • [25] A Novel Gaussian Particle Swarms optimized Particle Filter Algorithm for the State of Charge Estimation of Lithium-ion Batteries
    Wang, Xinyang
    Wang, Shunli
    Huang, Junhan
    Fernandez, Carlos
    Zhou, Yicong
    Chen, Lei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (10): : 10632 - 10648
  • [26] A Co-Estimation Framework for State of Charge and Parameters of Lithium-Ion Battery With Robustness to Aging and Usage Conditions
    Natella, Domenico
    Onori, Simona
    Vasca, Francesco
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (06) : 5760 - 5770
  • [27] Estimation of state-of-charge and state-of-health for lithium-ion battery based on improved firefly optimized particle filter
    Ouyang, Tiancheng
    Ye, Jinlu
    Xu, Peihang
    Wang, Chengchao
    Xu, Enyong
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [28] The State of Charge Estimation of Lithium-Ion Battery Based on Battery Capacity
    Li, Junhong
    Jiang, Zeyu
    Jiang, Yizhe
    Song, Weicheng
    Gu, Juping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (12)
  • [29] Lithium-ion Battery State of Charge Estimation based on Moving Horizon
    Ma Yan
    Zhou Xiuwen
    Zhang Jixing
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5002 - 5007
  • [30] State of charge estimation of vehicle lithium-ion battery based on unscented Kalman filter
    Chen, Junlin
    Wang, Chun
    Pu, Long
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1934 - 1938