Novel co-estimation strategy based on forgetting factor dual particle filter algorithm for the state of charge and state of health of the lithium-ion battery

被引:19
|
作者
Ren, Pu [1 ]
Wang, Shunli [1 ]
Huang, Junhan [1 ]
Chen, Xianpei [1 ]
He, Mingfang [1 ]
Cao, Wen [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
battery management system; capacity fading; forgetting factor dual particle filter; lithium-ion battery; second-order RC equivalent circuit; state of charge; state of health;
D O I
10.1002/er.7230
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For the battery management system, accurate estimation of the state of charge and state of health is of great significance. Herein, the ternary Li-ion battery is taken as the research object; the second-order resistor-capacitor (RC) equivalent circuit is taken advantage of to characterize the battery performance. A method for calculating the state of health of Li-ion batteries based on capacity fading was established. A novel forgetting factor dual particle filter algorithm is proposed for co-estimation of the state of charge and state of health by combining the forgetting factor and the particle filter algorithm. The state of charge and state of health of Li-ion batteries under Beijing Bus Dynamic Stress Test conditions are evaluated. In the state of charge estimation, the maximum error, mean absolute error, and root mean square error is 1.1395%, 0.4916%, and 0.5145% in Beijing Bus Dynamic Stress Test condition, 1.8125%, 0.6329%, and 0.7955% in Dynamic Stress Test condition, compared with the extended Kalman filter, unscented Kalman filter, and particle filter algorithms, all reduced obviously. In the state of health estimation, compared with the Random Forest and adaptive dual extended Kalman filter-based fuzzy inference system, the mean execution time and convergence time are 11.14 seconds and 0.44 second in Dynamic Stress Test condition and 15.17 seconds and 0.63 second in Beijing Bus Dynamic Stress Test condition; the results show lower computation complexity and faster convergence speed, which play an important role in promoting the further application of lithium-ion batteries. Novelty Statement A new forgetting factor dual particle filter algorithm is proposed to realize the co-estimation the battery state of charge and state of health. The capacity and the state of health were estimated for Dynamic Stress Test and Beijing Bus Dynamic Stress Test conditions, respectively, and the estimation results of the two common conditions were analyzed. SOC estimator is impressive for its high accuracy and quick convergence. The estimated SOH information has better convergence performance and shorter running time.
引用
收藏
页码:1094 / 1107
页数:14
相关论文
共 50 条
  • [11] State of Charge (SoC) and State of Health (SoH) Estimation of Lithium-Ion Battery Using Dual Extended Kalman Filter Based on Polynomial Battery Model
    Azis, Nadana Ayzah
    Joelianto, Endra
    Widyotriatmo, Augie
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 88 - 93
  • [12] A chaotic firefly- Particle filtering method of dynamic migration modeling for the state-of-charge and state-of-health co-estimation of a lithium-ion battery performance
    Qiao, Jialu
    Wang, Shunli
    Yu, Chunmei
    Yang, Xiao
    Fernandez, Carlos
    ENERGY, 2023, 263
  • [13] A novel robust back propagation neural network-dual extended Kalman filter model for state-of-charge and state-of-health co-estimation of lithium-ion batteries
    Jin, Siyu
    Wang, Chao
    Wang, Shunli
    Yang, Xiao
    Store, Daniel-Ion
    2023 IEEE PES CONFERENCE ON INNOVATIVE SMART GRID TECHNOLOGIES, ISGT MIDDLE EAST, 2023,
  • [14] State of Charge Estimation for Lithium-Ion Battery Based on Improved Cubature Kalman Filter Algorithm
    Li, Guochun
    Liu, Chang
    Wang, Enlong
    Wang, Limei
    AUTOMOTIVE INNOVATION, 2021, 4 (02) : 189 - 200
  • [15] State of Charge Estimation for Lithium-Ion Battery Based on Improved Cubature Kalman Filter Algorithm
    Guochun Li
    Chang Liu
    Enlong Wang
    Limei Wang
    Automotive Innovation, 2021, 4 : 189 - 200
  • [16] The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles
    Shen, Ping
    Ouyang, Minggao
    Lu, Languang
    Li, Jianqiu
    Feng, Xuning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (01) : 92 - 103
  • [17] A Multiple Time-Scales Based Multi-state Co-estimation Method for Lithium-ion Battery
    Fu, Shiyi
    Lv, Taolin
    Xie, Jingying
    Wu, Lei
    Luo, Chengdong
    2021 11TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2021), 2021, : 183 - 189
  • [18] State of Charge, State of Health and State of Function Co-estimation of Lithium-ion Batteries for Electric Vehicles
    Shen, Ping
    Ouyang, Minggao
    Lu, Languang
    Li, Jianqiu
    2016 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2016,
  • [19] State of charge estimation of lithium-ion battery based on extended Kalman filter algorithm
    Xie, Jiamiao
    Wei, Xingyu
    Bo, Xiqiao
    Zhang, Peng
    Chen, Pengyun
    Hao, Wenqian
    Yuan, Meini
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [20] A novel back propagation neural network-dual extended Kalman filter method for state-of-charge and state-of-health co-estimation of lithium-ion batteries based on limited memory least square algorithm
    Wang, Chao
    Wang, Shunli
    Zhou, Jinzhi
    Qiao, Jialu
    Yang, Xiao
    Xie, Yanxin
    JOURNAL OF ENERGY STORAGE, 2023, 59