Seawater electrolysis for hydrogen production: a solution looking for a problem?

被引:294
|
作者
Khan, M. A. [1 ]
Al-Attas, Tareq [1 ]
Roy, Soumyabrata [2 ]
Rahman, Muhammad M. [2 ]
Ghaffour, Noreddine [3 ]
Thangadurai, Venkataraman [4 ]
Larter, Stephen [5 ]
Hu, Jinguang [1 ]
Ajayan, Pulickel M. [2 ]
Kibria, Md Golam [1 ]
机构
[1] Univ Calgary, Dept Chem & Petr Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[2] Rice Univ, Dept Mat Sci & Nano Engn, 6100 Main St, Houston, TX 77030 USA
[3] King Abdullah Univ Sci & Technol KAUST, Water Desalinat & Reuse Ctr WDRC, Div Biol & Environm Sci & Engn BESE, Thuwal 239556900, Saudi Arabia
[4] Univ Calgary, Dept Chem, 2500 Dr Northwest, University, AB T2N 1N4, Canada
[5] Univ Calgary, Dept Geosci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
REVERSE-OSMOSIS; DESALINATION CURRENT; WATER ELECTROLYSIS; RENEWABLE POWER; FUTURE; ENERGY; OPPORTUNITIES; CHALLENGES; ECONOMICS; HYDROXIDE;
D O I
10.1039/d1ee00870f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As the price of renewable electricity continues to plummet, hydrogen (H-2) production via water electrolysis is gaining momentum globally as a route to decarbonize our energy systems. The requirement of high purity water for electrolysis and the widespread availability of seawater have led to significant research efforts in developing direct seawater electrolysis technology for H-2 production. In this perspective, we critically assess the broad-brush arguments on the research and development (R&D) needs for direct seawater electrolysis from energy, cost and environmental aspects. We focus in particular on a process consisting of seawater reverse osmosis (SWRO) coupled to proton exchange membrane (PEM) electrolysis. Our analysis reveals there are limited economic and environmental incentives of pursuing R&D on today's nascent direct seawater electrolysis technology. As commercial water electrolysis requires a significant amount of energy compared to SWRO, the capital and operating costs of SWRO are found to be negligible. This leads to an insignificant increase in levelized cost of H-2 (<0.1 $ per kg H-2) and CO2 emissions (<0.1%) from a SWRO-PEM coupled process. Our analysis poses the questions: what is the future promise of direct seawater electrolysis? With an urgent need to decarbonize our energy systems, should we consider realigning our research investments? We conclude with a forward-looking perspective on future R&D priorities in desalination and electrolysis technologies.
引用
收藏
页码:4831 / 4839
页数:9
相关论文
共 50 条
  • [1] Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production
    Yu, Zhipeng
    Liu, Lifeng
    ADVANCED MATERIALS, 2024, 36 (13)
  • [2] Seawater Treatment Technologies for Hydrogen Production by Electrolysis-A Review
    Mika, Lukasz
    Sztekler, Karol
    Bujok, Tomasz
    Boruta, Piotr
    Radomska, Ewelina
    ENERGIES, 2024, 17 (24)
  • [3] Seawater electrolysis technologies for green hydrogen production: challenges and opportunities
    Gao, Fei-Yue
    Yu, Peng-Cheng
    Gao, Min-Rui
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2022, 36
  • [4] Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea
    d'Amore-Domenech, Rafael
    Santiago, Oscar
    Leo, Teresa J.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 133
  • [5] Solar hydrogen production from seawater vapor electrolysis
    Kumari, Sudesh
    White, R. Turner
    Kumar, Bijandra
    Spurgeon, Joshua M.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) : 1725 - 1733
  • [6] Chlorine-oxidation-free dual hydrogen production by seawater electrolysis coupling formaldehyde oxidation
    Wang, Qi
    Liu, Xiangjian
    Zhu, Jiawei
    Jiang, Heqing
    ELECTROCHIMICA ACTA, 2024, 496
  • [7] Seawater electrolysis for hydrogen production: Technological advancements and future perspectives
    Mishra, Arti
    Park, Hyunwoong
    El-Mellouhi, Fedwa
    Han, Dong Suk
    FUEL, 2024, 361
  • [8] Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells
    Liu, Zhao
    Han, Beibei
    Lu, Zhiyi
    Guan, Wanbing
    Li, Yuanyuan
    Song, Changjiang
    Chen, Liang
    Singhal, Subhash C.
    APPLIED ENERGY, 2021, 300
  • [9] Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production
    Xu, Yingshuang
    Lv, Honghao
    Lu, Huasen
    Quan, Qinghao
    Li, Wenzhen
    Cui, Xuejing
    Liu, Guangbo
    Jiang, Luhua
    NANO ENERGY, 2022, 98
  • [10] Overview of the Hydrogen Production by Plasma-Driven Solution Electrolysis
    Bespalko, Sergii
    Mizeraczyk, Jerzy
    ENERGIES, 2022, 15 (20)