UNIFORM ESTIMATES OF AN EULERIAN-LAGRANGIAN METHOD FOR TIME-DEPENDENT CONVECTION-DIFFUSION EQUATIONS IN MULTIPLE SPACE DIMENSIONS

被引:10
|
作者
Wang, Hong [1 ,2 ]
Wang, Kaixin [1 ]
机构
[1] Shandong Univ, Sch Math Sci, Jinan 250100, Shandong, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
characteristic methods; convergence analysis; error estimates; Eulerian-Lagrangian methods; interpolation of spaces; uniform error estimates; ADVECTION-REACTION EQUATIONS; LOCALIZED ADJOINT METHODS; ORDER ERROR ESTIMATE; CONVERGENCE ANALYSIS; ELLAM SCHEME;
D O I
10.1137/070682952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a priori error estimates for a family of Eulerian-Lagrangian methods for time-dependent convection-diffusion equations in multiple space dimensions, which hold uniformly with respect to the vanishing parameter e. We use the interpolation of spaces and stability estimates to derive an e-uniform estimate for problems with minimal or intermediate regularity, where the convergence rates are proportional to certain Besov norms of the initial and right-hand side data. These estimates theoretically justify the strength of Eulerian-Lagrangian methods.
引用
收藏
页码:1444 / 1473
页数:30
相关论文
共 50 条