共 33 条
UNIFORM ESTIMATES OF AN EULERIAN-LAGRANGIAN METHOD FOR TIME-DEPENDENT CONVECTION-DIFFUSION EQUATIONS IN MULTIPLE SPACE DIMENSIONS
被引:10
|作者:
Wang, Hong
[1
,2
]
Wang, Kaixin
[1
]
机构:
[1] Shandong Univ, Sch Math Sci, Jinan 250100, Shandong, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金:
美国国家科学基金会;
关键词:
characteristic methods;
convergence analysis;
error estimates;
Eulerian-Lagrangian methods;
interpolation of spaces;
uniform error estimates;
ADVECTION-REACTION EQUATIONS;
LOCALIZED ADJOINT METHODS;
ORDER ERROR ESTIMATE;
CONVERGENCE ANALYSIS;
ELLAM SCHEME;
D O I:
10.1137/070682952
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove a priori error estimates for a family of Eulerian-Lagrangian methods for time-dependent convection-diffusion equations in multiple space dimensions, which hold uniformly with respect to the vanishing parameter e. We use the interpolation of spaces and stability estimates to derive an e-uniform estimate for problems with minimal or intermediate regularity, where the convergence rates are proportional to certain Besov norms of the initial and right-hand side data. These estimates theoretically justify the strength of Eulerian-Lagrangian methods.
引用
收藏
页码:1444 / 1473
页数:30
相关论文