UNIFORM ESTIMATES OF AN EULERIAN-LAGRANGIAN METHOD FOR TIME-DEPENDENT CONVECTION-DIFFUSION EQUATIONS IN MULTIPLE SPACE DIMENSIONS
被引:10
|
作者:
Wang, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Math Sci, Jinan 250100, Shandong, Peoples R China
Univ S Carolina, Dept Math, Columbia, SC 29208 USAShandong Univ, Sch Math Sci, Jinan 250100, Shandong, Peoples R China
Wang, Hong
[1
,2
]
Wang, Kaixin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Math Sci, Jinan 250100, Shandong, Peoples R ChinaShandong Univ, Sch Math Sci, Jinan 250100, Shandong, Peoples R China
Wang, Kaixin
[1
]
机构:
[1] Shandong Univ, Sch Math Sci, Jinan 250100, Shandong, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
We prove a priori error estimates for a family of Eulerian-Lagrangian methods for time-dependent convection-diffusion equations in multiple space dimensions, which hold uniformly with respect to the vanishing parameter e. We use the interpolation of spaces and stability estimates to derive an e-uniform estimate for problems with minimal or intermediate regularity, where the convergence rates are proportional to certain Besov norms of the initial and right-hand side data. These estimates theoretically justify the strength of Eulerian-Lagrangian methods.
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USA
Kunming Univ Sci & Technol, Dept Engn Mech, Kunming, Peoples R ChinaPenn State Univ, Dept Math, University Pk, PA 16802 USA
Hu, Xiaozhe
Lee, Young-Ju
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Lee, Young-Ju
Xu, Jinchao
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Xu, Jinchao
Zhang, Chen-Song
论文数: 0引用数: 0
h-index: 0
机构:
Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R China
Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R ChinaPenn State Univ, Dept Math, University Pk, PA 16802 USA