Indoor particulate matter (PM2.5) in Malaysian academic building: Elemental characterization and source apportionment

被引:0
作者
Isa, Intan Idura Mohamad [1 ]
Abd Wahid, Nurul Bahiyah [1 ]
Jamhari, Anas Ahmad [2 ]
Isa, Irma Izani Mohamad [3 ]
Latif, Mohd Talib [4 ]
机构
[1] Univ Pendidikan Sultan Idris, Fac Sci & Math, Dept Biol, Tanjung Malim 35900, Perak, Malaysia
[2] Univ Sultan Zainal Abidin, Fac Hlth Sci, Sch Biomed Sci, Terengganu, Malaysia
[3] Univ Putra Malaysia, Fac Med & Hlth Sci, Dept Biomed Sci, Serdang, Selangor, Malaysia
[4] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Earth Sci & Environm, Bangi, Selangor, Malaysia
关键词
PM2.5; aerosols; source apportionment; indoor air pollution; trace metals; water-soluble ionic species; HEALTH-RISK ASSESSMENT; HEAVY-METALS; KUALA-LUMPUR; ROAD DUST; URBAN; PM10; SURFACTANTS; AIR; SCHOOLS; CITY;
D O I
10.1080/15275922.2022.2125106
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aims to determine the elemental compositions of indoor particulate matter (PM2.5) in two selected academic buildings, with emphasis on source apportionment using a multivariate receptor model. PM2.5 samples were collected from lecture halls, laboratories and lecturer offices at the Ministry of Health Training Institute of Sungai Buloh (S1) and the Ministry of Health Training Institute of Sultan Azlan Shah (S2). Sampling took place over 8 h using a low volume sampler (LVS). In this study, various scientific methods such as standard methods for air quality analysis as well as Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) were applied in order to investigate the elemental characterizations and source apportionment of PM2.5, respectively. The PM2.5 compositions for water-soluble ionic species (WSIS) and trace metals were analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. Results showed that the mean PM2.5 concentration at S1 (108 +/- 39.5 mu g m(-3)) was higher than S2 (91.1 +/- 36.6 mu g m(-3)). PCA-MLR analysis revealed that biomass burning (48%) and building material/crustal origin (81%) were the major sources of indoor PM2.5 for S1 and S2, respectively. Modifications and improvements to ventilation systems could be implemented in order to maintain a good health of the building occupants as outside sources may contribute to the presence of pollutants in these buildings.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi
    Mansha, M.
    Ghauri, Badar
    Rahman, Said
    Amman, Arif
    SCIENCE OF THE TOTAL ENVIRONMENT, 2012, 425 : 176 - 183
  • [2] Particulate Matter (PM2.5) Concentration and Source Apportionment in Lahore
    Lodhi, Arifa
    Ghauri, Badar
    Khan, M. Rafiq
    Rahman, S.
    Shafique, Shoaib
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2009, 20 (10) : 1811 - 1820
  • [3] Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran
    Soleimani, Mohsen
    Amini, Nasibeh
    Sadeghian, Babak
    Wang, Dongsheng
    Fang, Liping
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2018, 72 : 166 - 175
  • [4] Chemical characterization and source apportionment of atmospheric fine particulate matter (PM2.5) at an urban site in Astana, Kazakhstan
    Ormanova, Gulden
    Hopke, Philip K.
    Dhammapala, Ranil
    Ozturk, Fatma
    Shah, Dhawal
    Torkmahalleh, Mehdi Amouei
    ATMOSPHERIC POLLUTION RESEARCH, 2025, 16 (01)
  • [5] Chemical characteristics and source apportionment of particulate matter (PM2.5) in Dammam, Saudi Arabia: Impact of dust storms
    Alwadei, Manna
    Srivastava, Deepchandra
    Alam, Mohammed S.
    Shi, Zongbo
    Bloss, William J.
    ATMOSPHERIC ENVIRONMENT-X, 2022, 14
  • [6] Source Apportionment of Particulate Matter (PM10) and Indoor Dust in a University Building
    Zhong, Jafon Ng Mum
    Latif, Mohd Talib
    Mohamad, Noorlin
    Abd Wahid, Nurul Bahiyah
    Dominick, Doreena
    Juahir, Hafizan
    ENVIRONMENTAL FORENSICS, 2014, 15 (01) : 8 - 16
  • [7] Water-Soluble Inorganic Anions in Fine Particulate Matter (PM2.5) in Dhaka, Bangladesh: Source Apportionment
    Rumman, Riadul
    Haq, Md Rezaul
    Rahat, Md Masudur Rahman
    Jahan, Farhana
    Moulick, Shyama Prosad
    Nigar, Refayat
    Halder, Chandan
    Liu, Wenbin
    Ferdousi, Farhana Khanam
    Habib, Ahsan
    JOURNAL OF CHEMISTRY, 2024, 2024
  • [8] Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia
    Khodeir, Mamdouh
    Shamy, Magdy
    Alghamdi, Mansour
    Zhong, Mianhua
    Sun, Hong
    Costa, Max
    Chen, Lung-Chi
    Maciejczyk, Polina
    ATMOSPHERIC POLLUTION RESEARCH, 2012, 3 (03) : 331 - 340
  • [9] Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan
    Hsu, Chin-Yu
    Chiang, Hung-Che
    Lin, Sheng-Lun
    Chen, Mu-Jean
    Lin, Tzu-Yu
    Chen, Yu-Cheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 541 : 1139 - 1150
  • [10] The chemical characterization and source apportionment of PM2.5 and PM10 in a typical city of Northeast China
    Dong, Deming
    Qiu, Tao
    Du, Shanshan
    Gu, Yu
    Li, Anfeng
    Hua, Xiuyi
    Ning, Yang
    Liang, Dapeng
    URBAN CLIMATE, 2023, 47