Synthesis of Copolyimides Based on Room Temperature Ionic Liquid Diamines

被引:53
作者
Li, Pei [1 ]
Zhao, Qichao [2 ]
Anderson, Jared L. [2 ]
Varanasi, Sasidhar [1 ]
Coleman, Maria R. [1 ]
机构
[1] Univ Toledo, Dept Chem & Environm Engn, Toledo, OH 43606 USA
[2] Univ Toledo, Dept Chem, Toledo, OH 43606 USA
关键词
block copolymers; ionic liquid; membranes; polyimides; GAS SEPARATION PERFORMANCE; WEIGHT RELATION; PERMEABILITY; MEMBRANES; SORPTION; CO2;
D O I
10.1002/pola.24189
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Block copolyimides based on aromatic dianhydrides and diamines copolymerized with diamino room temperature ionic liquid (RTIL) monomers were synthesized over a range of compositions Specifically, two diamino RTILs, 1,3-di(3-amino-propyl) imidazolium bis[(trifluoromethyl)sulfonyl] imide ([DAPIM] [NTf2]) and 1,12-di[3-(3-aminopropyl) imidazolium] dodecane bis[(trifluoromethyl) sulfonyl] imide ([C-12 (DAPIM)(2)] [NTf2](2)) were synthesized using a Boc protection method The two RTILs were reacted with 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) to produce 6FDA-RTILs oligomers that formed the RTIL component for the block copolyimides The oligomers were reacted with 6FDA and m-phenylenediamine (MDA) at oligomer concentration from 6 5 to 258 mol % to form block copolyimides Increasing the concentration of the 6FDA-RTIL oligomer in the block copolyimides resulted in a decrease in the thermal degradation temperature, glass transition temperature and an increase in the density The gas permeability of the RTIL based block copolyimide decreased but the ideal permeability selectivity for CO2/CH4 gas pair increased relative to the pure 6FDA-MDA (C) 2010 Wiley Periodicals, Inc J Polym Sci Part A Polym Chem 48 4036-4046, 2010
引用
收藏
页码:4036 / 4046
页数:11
相关论文
共 36 条
[1]   End-group determination in poly(ethylene terephthalate) by infrared spectroscopy [J].
Al-AbdulRazzak, S ;
Lofgren, EA ;
Jabarin, SA .
POLYMER INTERNATIONAL, 2002, 51 (02) :174-182
[2]  
[Anonymous], 2003, CONT POLYM CHEM
[3]  
AVEAM M, 1970, INFRARED SPECTROSCOP
[4]  
Baker R.W., 2004, Membrane Technology and Applications, V2nd, P301, DOI [10.1002/0470020393, DOI 10.1002/0470020393]
[5]   Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes [J].
Bara, Jason E. ;
Lessmann, Sonja ;
Gabriel, Christopher J. ;
Hatakeyama, Evan S. ;
Noble, Richard D. ;
Gin, Douglas L. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (16) :5397-5404
[6]   Effect of "Free" Cation Substituent on Gas Separation Performance of Polymer-Room-Temperature Ionic Liquid Composite Membranes [J].
Bara, Jason E. ;
Noble, Richard D. ;
Gin, Douglas L. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (09) :4607-4610
[7]   Effect of Anion on Gas Separation Performance of Polymer-Room-Temperature Ionic Liquid Composite Membranes [J].
Bara, Jason E. ;
Gin, Douglas L. ;
Noble, Richard D. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (24) :9919-9924
[8]   CO2 capture by a task-specific ionic liquid [J].
Bates, ED ;
Mayton, RD ;
Ntai, I ;
Davis, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (06) :926-927
[9]   Green processing using ionic liquids and CO2 [J].
Blanchard, LA ;
Hancu, D ;
Beckman, EJ ;
Brennecke, JF .
NATURE, 1999, 399 (6731) :28-29
[10]   Carbon dioxide solubility in polymerized ionic liquids containing ammonium and imidazolium cations from magnetic suspension balance:: P[VBTMA][BF4] and P[VBMI][BF4] [J].
Blasig, Andre ;
Tang, Jianbin ;
Hu, Xudong ;
Tan, Sugata P. ;
Shen, Youqing ;
Radosz, Maciej .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (17) :5542-5547