On sobolev orthogonal polynomials with coherent pairs: The Laguerre case, type 1

被引:3
作者
Pan, K [1 ]
机构
[1] Barry Univ, Dept Math, Miami Shores, FL 33161 USA
关键词
D O I
10.1006/jmaa.1998.5991
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic properties of orthogonal polynomials with Sobolev inner product [f, g] = integral(a)(b)f(x)g(x) d mu(x) + lambda integral(a)(b)f' (x)g' (x) d nu(x). The pair {d mu, d nu} is called a coherent pair if there exists nonzero constants D-n such that Q(n)(x) = Pn + 1'(x)/n + 1 + DnPn'(x)/n, n greater than or equal to 1, where P-n(x) and Q(n)(x) are the nth monic orthogonal polynomials with respect to d mu and d nu, respectively. One can divide the coherent pairs into two cases: the Jacobi case and the Laguerre case. There are two types in each case. We consider the nth root asymptotics and the zero distribution for the Laguerre case, type 1. (C) 1998 Academic Press.
引用
收藏
页码:319 / 333
页数:15
相关论文
共 16 条
[1]  
BRUINSMA KJ, 1995, 9565 FTMI DELFT U TE
[2]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[3]  
COHEN EA, 1975, SIAM J MATH ANAL, V6, P105, DOI 10.1137/0506011
[4]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[5]   Laguerre-Sobolev orthogonal polynomials [J].
Marcellan, F ;
Perez, TE ;
Pinar, MA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) :245-265
[6]   Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures [J].
Martinez-Finkelshtein, A ;
Moreno-Balcazar, JJ ;
Perez, TE ;
Pinar, MA .
JOURNAL OF APPROXIMATION THEORY, 1998, 92 (02) :280-293
[7]  
Meijer H. G., 1996, NIEUW ARCH WISK, V14, P93
[8]   COHERENT PAIRS AND ZEROS OF SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS [J].
MEIJER, HG .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1993, 4 (02) :163-176
[9]  
MEIJER HG, 1995, 9541 FTMI DELFT U TE
[10]  
MHASKAR HN, 1984, LECT NOTES MATH, V1105, P511