An optimal shape design approach for the transient flow in the dam problem

被引:2
作者
Chakib, A
Ghemires, T
Nachaoui, A
机构
[1] Univ Mohammed V, Fac Sci, Dept Math & Informat, Rabat, Morocco
[2] Univ Nantes, CNRS UMR 6629, F-44322 Nantes, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 12期
关键词
D O I
10.1016/S0764-4442(00)01748-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we present a new numerical approach of the transient flow problem through homogeneous porous medium (say dam). Using a convenient time discretization of the motion equation of the free boundary the study of the problem is reduced to treat a stationary one, which is presented as a shape design problem. We show the existence of the optimal shape and we give some numerical results. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1005 / 1010
页数:6
相关论文
共 13 条
[1]  
BAIOCCHI C, 1973, ANN MAT PUR APPL, V96, P1
[2]  
BREZIS H, 1978, CR ACAD SCI A MATH, V287, P711
[3]   ON THE UNIQUENESS OF THE SOLUTION OF THE EVOLUTION DAM PROBLEM [J].
CARRILLO, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (05) :573-607
[4]   A new formulation of the inhomogeneous dam problem [J].
Chakib, A ;
Ghemires, T ;
Nachaoui, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (10) :933-938
[5]  
Friedman A., 1987, ANN SCU NORM SUP PIS, V14, P49
[6]  
Gilardi G., 1979, COMMUN PART DIFF EQ, V4, P1099, DOI [10.1080/03605307908820122, DOI 10.1080/03605307908820122]
[7]  
Haslinger J., 1996, FINITE ELEMENT APPRO
[8]  
HLAVACEK I, 1982, ANAL NUMERIQUE, V16, P351
[9]   The inhomogeneous dam problem with linear Darcy's law and Dirichlet boundary conditions [J].
Lyaghfouri, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08) :1051-1077
[10]  
SCHNEEBELI G, 1977, HYDRAULIQUE SOUTERRA