Hierarchical multiscale Bayesian algorithm for robust MEG/EEG source reconstruction

被引:44
作者
Cai, Chang [1 ]
Sekihara, Kensuke [2 ,3 ]
Nagarajan, Srikantan S. [1 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[2] Tokyo Med & Dent Univ, Dept Adv Technol Med, Bunkyo Ku, 1-5-45 Yushima, Tokyo 1138519, Japan
[3] Signal Anal Inc, Hachioji, Tokyo, Japan
关键词
Brain mapping; Magnetoencephalography; Electroencephalography; Bayesian; INVERSE PROBLEM; PROBABILISTIC ALGORITHM; BRAIN; MEG; FMRI; EEG; LOCALIZATION; SUPPRESSION; FRAMEWORK;
D O I
10.1016/j.neuroimage.2018.07.056
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this paper, we present a novel hierarchical multiscale Bayesian algorithm for electromagnetic brain imaging using magnetoencephalography (MEG) and electroencephalography (EEG). In particular, we present a solution to the source reconstruction problem for sources that vary in spatial extent. We define sensor data measurements using a generative probabilistic graphical model that is hierarchical across spatial scales of brain regions and voxels. We then derive a novel Bayesian algorithm for probabilistic inference with this graphical model. This algorithm enables robust reconstruction of sources that have different spatial extent, from spatially contiguous clusters of dipoles to isolated dipolar sources. We compare the new algorithm with several representative benchmarks on both simulated and real brain activities. The source locations and the correct estimation of source time courses used for the simulated data are chosen to test the performance on challenging source configurations. In simulations, performance of the novel algorithm shows superiority to several existing benchmark algorithms. We also demonstrate that the new algorithm is more robust to correlated brain activity present in real MEG and EEG data and is able to resolve distinct and functionally relevant brain areas with real MEG and EEG datasets.
引用
收藏
页码:698 / 715
页数:18
相关论文
共 41 条
[1]  
Attias HT, 2013, I S BIOMED IMAGING, P548
[2]   A Subspace Pursuit-based Iterative Greedy Hierarchical solution to the neuromagnetic inverse problem [J].
Babadi, Behtash ;
Obregon-Henao, Gabriel ;
Lamus, Camilo ;
Haemaelaeinen, Matti S. ;
Brown, Emery N. ;
Purdon, Patrick L. .
NEUROIMAGE, 2014, 87 :427-443
[3]   Space-time event sparse penalization for magneto-/electroencephalography [J].
Bolstad, Andrew ;
Van Veen, Barry ;
Nowak, Robert .
NEUROIMAGE, 2009, 46 (04) :1066-1081
[4]  
Boyd L., 2004, CONVEX OPTIMIZATION
[5]  
Dalal S.S., 2004, NEUROL CLIN NEUROPHY, V52
[6]   Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity [J].
Dale, AM ;
Liu, AK ;
Fischl, BR ;
Buckner, RL ;
Belliveau, JW ;
Lewine, JD ;
Halgren, E .
NEURON, 2000, 26 (01) :55-67
[7]   Mapping human brain function with MEG and EEG: methods and validation [J].
Darvas, F ;
Pantazis, D ;
Kucukaltun-Yildirim, E ;
Leahy, RM .
NEUROIMAGE, 2004, 23 :S289-S299
[8]   Bayesian spatio-temporal approach for EEG source reconstruction: Conciliating ECD and distributed models [J].
Daunizeau, J ;
Mattout, J ;
Clonda, D ;
Goulard, B ;
Benali, H ;
Lina, JM .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (03) :503-516
[9]   Spatiotemporal imaging of cortical activation during verb generation and picture naming [J].
Edwards, Erik ;
Nagarajan, Srikantan S. ;
Dalal, Sarang S. ;
Canolty, Ryan T. ;
Kirsch, Heidi E. ;
Barbaro, Nicholas M. ;
Knight, Robert T. .
NEUROIMAGE, 2010, 50 (01) :291-301
[10]   Bayesian decoding of brain images [J].
Friston, Karl J. ;
Chu, Carlton ;
Mourao-Miranda, Janaina ;
Hulme, Oliver ;
Rees, Geraint ;
Penny, Will ;
Ashburner, John .
NEUROIMAGE, 2008, 39 (01) :181-205