A method for characterizing membranes during nanofiltration at extreme pH

被引:59
|
作者
Dalwani, Mayur [1 ]
Benes, Nieck E. [1 ]
Bargeman, Gerrald [2 ]
Stamatialis, Dimitris [1 ]
Wessling, Matthias [1 ]
机构
[1] Univ Twente, Fac Sci & Technol, Membrane Technol Grp, NL-7500 AE Enschede, Netherlands
[2] Akzo Nobel Chem BV Res Dev & Innovat, NL-6800 SB Arnhem, Netherlands
关键词
Molecular weight cut off; Nanofiltration; Polyethylene glycol; pH; NF-270; MOLECULAR-WEIGHT CUTOFF; NF MEMBRANES; TIO2; MEMBRANES; NONAQUEOUS SYSTEMS; UF MEMBRANES; RETENTION; CONDUCTANCE; TRANSPORT; POLYELECTROLYTES; ULTRAFILTRATION;
D O I
10.1016/j.memsci.2010.07.025
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work presents a method for molecular weight cut off (MWCO) characterization of nanofiltration membranes, in a broad range of acidic and alkaline environments. Polyethylene glycols (PEG) have been identified as suitable marker molecules with sufficient chemical stability under the harsh conditions of interest. PEG molecular weight distributions have been analyzed using gel permeation chromatography (GPC). To allow quantitative GPC analysis, a protocol is presented to overcome the problem of an overlapping salt peak in the GPC elugram. The method is applied to a well-known commercial nanofiltration membrane (NF-270. DOW FILMTEC(TM)) in the pH range 2-12. This membrane has similar MWCO (similar to 270g mol(-1)) and permeance (similar to 10 L m(-2) h(-1) bar(-1)) in acid environment and at neutral conditions. At pH =12 a reversible increase was observed for the MWCO (similar to 380g mol(-1)) and the permeance (similar to 12 Lm(-2) h(-1) bar(-1)). This demonstrates the added value of our method to observe the change of MWCO as a function of pH during nanofiltration at the relevant conditions. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:188 / 194
页数:7
相关论文
共 50 条
  • [1] Crosslinked PVDF membranes for aqueous and extreme pH nanofiltration
    Van Goethem, Cedric
    Mertens, Matthias
    Vankelecom, Ivo F. J.
    JOURNAL OF MEMBRANE SCIENCE, 2019, 572 : 489 - 495
  • [2] Recent developments in the preparation of improved nanofiltration membranes for extreme pH conditions
    Bargeman, Gerrald
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 279
  • [3] Development of Thin-Film Composite Membranes for Nanofiltration at Extreme pH
    Tashvigh, Akbar Asadi
    Elshof, Maria G.
    Benes, Nieck E.
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (11) : 5912 - 5919
  • [4] A scalable crosslinking method for PVDF-based nanofiltration membranes for use under extreme pH conditions
    Van Goethem, Cedric
    Magboo, Mart Merwin
    Mertens, Matthias
    Thijs, Marloes
    Koeckelberghs, Guy
    Vankelecom, Ivo F. J.
    JOURNAL OF MEMBRANE SCIENCE, 2020, 611
  • [5] Polyurea nanofiltration membranes with extreme-pH stability and high separation performance
    Wang, Zhen
    Zhang, Runnan
    Zhang, Shiyu
    Li, Wenwen
    Zhi, Keda
    Su, Yanlei
    Jiang, Zhongyi
    JOURNAL OF MEMBRANE SCIENCE, 2024, 692
  • [6] On experimental parameters characterizing the reverse osmosis and nanofiltration membranes' active layer
    Kosutic, K.
    Dolar, D.
    Kunst, B.
    JOURNAL OF MEMBRANE SCIENCE, 2006, 282 (1-2) : 109 - 114
  • [7] The role of pH and concentration on the ion rejection in polyamide nanofiltration membranes
    Bandini, S
    Drei, J
    Vezzani, D
    JOURNAL OF MEMBRANE SCIENCE, 2005, 264 (1-2) : 65 - 74
  • [8] Self-Assembled Nanofiltration Membranes with Thermo- and pH-Responsive Behavior
    Saadat, Younes
    Tabatabaei, Seyed Mostafa
    Kim, Kyungtae
    Foudazi, Reza
    ACS ES&T ENGINEERING, 2024, 4 (06): : 1454 - 1468
  • [9] Effects of Feed Solution pH on Polyelectrolyte Multilayer Nanofiltration Membranes
    Junker, Moritz A.
    Regenspurg, Jurjen A.
    Rivera, Cristobal I. Valdes
    te Brinke, Esra
    de Vos, Wiebe M.
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (01) : 355 - 369
  • [10] pH Responsive Nanofiltration Membranes for Sugar Separations
    Himstedt, Heath H.
    Du, Hongbo
    Marshall, Kathryn M.
    Wickramasinghe, S. Ranil
    Qian, Xianghong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (26) : 9259 - 9269