Structure and stability of the magnetic solar tachocline

被引:19
作者
Ruediger, G.
Kitchatinov, L. L.
机构
[1] Inst Astrophys, D-14482 Potsdam, Germany
[2] Inst Solar Terrestrial Phys, Irkutsk 664033, Russia
来源
NEW JOURNAL OF PHYSICS | 2007年 / 9卷
关键词
D O I
10.1088/1367-2630/9/8/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rather weak fossil magnetic fields in the radiative core can produce the solar tachocline if the field is almost horizontal in the tachocline region, i.e. if the field is confined within the core. This particular field geometry is shown to result from a shallow ( less than or similar to 1Mm) penetration of the meridional flow existing in the convection zone into the radiative core. Two conditions are thus crucial for a magnetic tachocline theory: ( i) the presence of meridional flow of a few metres per second at the base of the convection zone, and ( ii) a magnetic diffusivity inside the tachocline smaller than 10(8) cm(2) s(-1). Numerical solutions for the confined poloidal fields and the resulting tachocline structures are presented. We find that the tachocline thickness runs as B-p(-1/2) with the poloidal field amplitude falling below 5% of the solar radius for B-p > 5 mG. The resulting toroidal field amplitude inside the tachocline of about 100G does not depend on the Bp. The hydromagnetic stability of the tachocline is only briefly discussed. For the hydrodynamic stability of latitudinal differential rotation we found that the critical 29% of the 2D theory of Watson ( 1981 Geophys. Astrophys. Fluid Dyn. 16 285) are reduced to only 21% in 3D for marginal modes of about 6 Mm radial scale.
引用
收藏
页数:20
相关论文
共 44 条
  • [21] Kitchatinov LL, 1999, ASTRON ASTROPHYS, V344, P911
  • [22] MERIDIONAL FLOW OF SMALL PHOTOSPHERIC MAGNETIC FEATURES
    KOMM, RW
    HOWARD, RF
    HARVEY, JW
    [J]. SOLAR PHYSICS, 1993, 147 (02) : 207 - 223
  • [23] Structure and rotation of the solar interior: Initial results from the MDI medium-l program
    Kosovichev, AG
    Schou, J
    Scherrer, PH
    Bogart, RS
    Bush, RI
    Hoeksema, JT
    Aloise, J
    Bacon, L
    Burnette, A
    DeForest, C
    Giles, PM
    Leibrand, K
    Nigam, R
    Rubin, M
    Scott, K
    Williams, SD
    Basu, S
    ChristensenDalsgaard, J
    Dappen, W
    Rhodes, EJ
    Duvall, TL
    Howe, R
    Thompson, MJ
    Gough, DO
    Sekii, T
    Toomre, J
    Tarbell, TD
    Title, AM
    Mathur, D
    Morrison, M
    Saba, JLR
    Wolfson, CJ
    Zayer, I
    Milford, PN
    [J]. SOLAR PHYSICS, 1997, 170 (01) : 43 - 61
  • [24] Helioseismic constraints on the gradient of angular velocity at the base of the solar convection zone
    Kosovichev, AG
    [J]. ASTROPHYSICAL JOURNAL, 1996, 469 (01) : L61 - L64
  • [25] Krause F., 1980, Mean-field magnetohydrodynamics and dynamo theory
  • [26] Angular momentum transport in magnetized stellar radiative zones. IV. Ferraro's theorem and the solar tachocline
    MacGregor, KB
    Charbonneau, P
    [J]. ASTROPHYSICAL JOURNAL, 1999, 519 (02) : 911 - 917
  • [27] Mestel L., 1999, STELLAR MAGNETISM
  • [28] Three-dimensional spherical simulations of solar convection. I. Differential rotation and pattern evolution achieved with laminar and turbulent states
    Miesch, MS
    Elliott, JR
    Toomre, J
    Clune, TL
    Glatzmaier, GA
    Gilman, PA
    [J]. ASTROPHYSICAL JOURNAL, 2000, 532 (01) : 593 - 615
  • [29] Explaining the latitudinal distribution of sunspots with deep meridional flow
    Nandy, D
    Choudhuri, AR
    [J]. SCIENCE, 2002, 296 (5573) : 1671 - 1673
  • [30] Solar differential rotation and meridional flow: The role of a subadiabatic tachocline for the Taylor-Proudman balance
    Rempel, M
    [J]. ASTROPHYSICAL JOURNAL, 2005, 622 (02) : 1320 - 1332