Structure and stability of the magnetic solar tachocline

被引:19
作者
Ruediger, G.
Kitchatinov, L. L.
机构
[1] Inst Astrophys, D-14482 Potsdam, Germany
[2] Inst Solar Terrestrial Phys, Irkutsk 664033, Russia
来源
NEW JOURNAL OF PHYSICS | 2007年 / 9卷
关键词
D O I
10.1088/1367-2630/9/8/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rather weak fossil magnetic fields in the radiative core can produce the solar tachocline if the field is almost horizontal in the tachocline region, i.e. if the field is confined within the core. This particular field geometry is shown to result from a shallow ( less than or similar to 1Mm) penetration of the meridional flow existing in the convection zone into the radiative core. Two conditions are thus crucial for a magnetic tachocline theory: ( i) the presence of meridional flow of a few metres per second at the base of the convection zone, and ( ii) a magnetic diffusivity inside the tachocline smaller than 10(8) cm(2) s(-1). Numerical solutions for the confined poloidal fields and the resulting tachocline structures are presented. We find that the tachocline thickness runs as B-p(-1/2) with the poloidal field amplitude falling below 5% of the solar radius for B-p > 5 mG. The resulting toroidal field amplitude inside the tachocline of about 100G does not depend on the Bp. The hydromagnetic stability of the tachocline is only briefly discussed. For the hydrodynamic stability of latitudinal differential rotation we found that the critical 29% of the 2D theory of Watson ( 1981 Geophys. Astrophys. Fluid Dyn. 16 285) are reduced to only 21% in 3D for marginal modes of about 6 Mm radial scale.
引用
收藏
页数:20
相关论文
共 44 条
  • [1] INSTABILITY OF TOROIDAL MAGNETIC-FIELDS AND DIFFERENTIAL ROTATION IN STARS
    ACHESON, DJ
    GIBBONS, MP
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1363): : 459 - 500
  • [2] Solar internal rotation rate and the latitudinal variation of the tachocline
    Antia, HM
    Basu, S
    Chitre, SM
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 298 (02) : 543 - 556
  • [3] Stability of toroidal magnetic fields in the solar tachocline
    Arlt, R.
    Sule, A.
    Ruediger, G.
    [J]. ASTRONOMY & ASTROPHYSICS, 2007, 461 (01) : 295 - 301
  • [4] Seismic measurement of the depth of the solar convection zone
    Basu, S
    Antia, HM
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 287 (01) : 189 - 198
  • [5] Magnetic confinement of the solar tachocline
    Brun, A. S.
    Zahn, J. -P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2006, 457 (02) : 665 - 674
  • [6] Stability of the solar latitudinal differential rotation inferred from helioseismic data
    Charbonneau, P
    Dikpati, M
    Gilman, PA
    [J]. ASTROPHYSICAL JOURNAL, 1999, 526 (01) : 523 - 537
  • [7] Helioseismic constraints on the structure of the solar tachocline
    Charbonneau, P
    Christensen-Dalsgaard, J
    Henning, R
    Larsen, RM
    Schou, J
    Thompson, MJ
    Tomczyk, S
    [J]. ASTROPHYSICAL JOURNAL, 1999, 527 (01) : 445 - 460
  • [8] THE DEPTH OF THE SOLAR CONVECTION ZONE
    CHRISTENSENDALSGAARD, J
    GOUGH, DO
    THOMPSON, MJ
    [J]. ASTROPHYSICAL JOURNAL, 1991, 378 (01) : 413 - 437
  • [9] INTERNAL ROTATION OF SUN
    DICKE, RH
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1970, 8 : 297 - &
  • [10] DONATI JF, 2007, ASTROPH0702159