Pd-Decorated 2D MXene (2D Ti3C2Tix) as a High-Performance Electrocatalyst for Reduction of Carbon Dioxide into Fuels toward Climate Change Mitigation

被引:24
|
作者
Govindan, Bharath [1 ]
Madhu, Rajesh [2 ]
Abu Haija, Mohammad [3 ,4 ]
Kusmartsev, Fedor, V [2 ]
Banat, Fawzi [1 ]
机构
[1] Khalifa Univ, Dept Chem Engn, POB 127788, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ, Dept Phys, POB 127788, Abu Dhabi, U Arab Emirates
[3] Khalifa Univ, Dept Chem, POB 127788, Abu Dhabi, U Arab Emirates
[4] Khalifa Univ, Ctr Catalysis & Separat, POB 127788, Abu Dhabi, U Arab Emirates
关键词
Pd nanoparticles; electrocatalysts; 2D MXene nanosheets; CO2; reduction; carbon neutrality; CO2 ELECTROCHEMICAL REDUCTION; NANOPARTICLES; GRAPHENE; CATALYSTS; CU(111); CH3OH;
D O I
10.3390/catal12101180
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Palladium nanoparticles (Pd NPs) have attracted considerable attention recently for their excellent catalytic properties in various catalysis reactions. However, Pd NPs have some drawbacks, including their high cost, susceptibility to deactivation, and the possibility of poisoning by intermediate products. Herein, Pd nanoparticles with an average diameter of 6.5 nm were successfully incorporated on electronically transparent 2D MXene (Ti3C2Tix) nanosheets (Pd-MXene) by microwave irradiation. Considering the synergetic effects of ultra-fine Pd NPs, together with the intrinsic properties of 2D MXene, the obtained Pd-MXene showed a specific surface area of 97.5 m(2)g(-1) and multiple pore channels that enabled excellent electrocatalytic activity for the reduction of CO2. Further, the 2D Pd-MXene hybrid nanocatalyst enables selective electroreduction of CO2 into selective production of CH3OH in ambient conditions by multiple electron transfer. A detailed explanation of the CO2RR mechanism is presented, and the faradic efficiency (FE) of CH3OH is tuned by varying the cell potential. Recyclability studies were conducted to demonstrate the practical application of CO2 reduction into selective production of CH3OH. In this study, metal and MXene interfaces were created to achieve a highly selective electroreduction of CO2 into fuels and other value-added chemical products.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Nanoscale Elastic Changes in 2D Ti3C2Tx (MXene) Pseudocapacitive Electrodes
    Come, Jeremy
    Xie, Yu
    Naguib, Michael
    Jesse, Stephen
    Kalinin, Sergei V.
    Gogotsi, Yury
    Kent, Paul R. C.
    Balke, Nina
    ADVANCED ENERGY MATERIALS, 2016, 6 (09)
  • [22] Synthesis of 2D/2D structural Ti3C2 MXene/g-C3N4 via the Schottky junction with metal oxides: Photocatalytic CO2 reduction with a cationic scavenger
    Otgonbayar, Zambaga
    Oh, Won-Chun
    APPLIED MATERIALS TODAY, 2023, 32
  • [23] Synergistic effects of 2D/2D ZnV2O6/RGO nanosheets heterojunction for stable and high performance photo-induced CO2 reduction to solar fuels
    Bafaqeer, Abdullah
    Tahir, Muhammad
    Amin, Nor Aishah Saidina
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 2142 - 2153
  • [24] 2D/2D V2C mediated porous g-C3N4 heterojunction with the role of monolayer/multilayer MAX/MXene structures for stimulating photocatalytic CO2 reduction to fuels
    Madi, Mohamed
    Tahir, Muhammad
    Zakaria, Zaki Yamani
    JOURNAL OF CO2 UTILIZATION, 2022, 65
  • [25] Self-assembly of Alternating Stacked 2D/2D Ti3C2Tx MXene/ZnMnNi LDH van der Waals Heterostructures with Ultrahigh Supercapacitive Performance
    Sun, Chao
    Zuo, Peng
    Sun, Wu
    Xia, Ruidi
    Dong, Zihao
    Zhu, Li
    Lv, Jing
    Deng, Guodong
    Tan, Linghua
    Dai, Yuming
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10): : 10242 - 10254
  • [26] In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution
    Xiao, Rong
    Zhao, Chengxiao
    Zou, Zhaoyong
    Chen, Zupeng
    Tian, Lin
    Xu, Haotian
    Tang, Hua
    Liu, Qinqin
    Lin, Zixia
    Yang, Xiaofei
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 268
  • [27] Highly efficient photoenzymatic CO2 reduction dominated by 2D/2D MXene/C3N5 heterostructured artificial photosynthesis platform
    Yang, Fengyi
    Zhang, Pengye
    Qu, Jiafu
    Yang, Xiaogang
    Cai, Yahui
    Li, Chang Ming
    Hu, Jundie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 : 1121 - 1131
  • [28] Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts
    Li, Zhaodong
    Attanayake, Nuwan H.
    Blackburn, Jeffrey L.
    Miller, Elisa M.
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (12) : 6242 - 6286
  • [29] Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation
    Xu, Ruiqi
    Wei, Na
    Li, Zhenkui
    Song, Xiaojie
    Li, Qi
    Sun, Kunyu
    Yang, Enquan
    Gong, Like
    Sui, Yiling
    Tian, Jian
    Wang, Xin
    Zhao, Minggang
    Cui, Hongzhi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 584 : 125 - 133
  • [30] Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels
    Jo, Wan-Kuen
    Kumar, Santosh
    Eslava, Salvador
    Tonda, Surendar
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 239 : 586 - 598