Endomorphism Rings Via Minimal Morphisms

被引:2
作者
Cortes-Izurdiaga, Manuel [1 ]
Guil Asensio, Pedro A. [2 ]
Tutuncu, D. Keskin [3 ]
Srivastava, Ashish K. [4 ]
机构
[1] Univ Almeri, Dept Matemat, Almeria 04120, Spain
[2] Univ Murcia, Dept Mathemat, Murcia 30100, Spain
[3] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey
[4] St Louis Univ, Dept Math & Stat, St Louis, MO 63103 USA
关键词
Endomorphism ring; Ziegler partial morphism; approximations; automorphism-invariant; INVARIANT;
D O I
10.1007/s00009-021-01802-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if u : K -> M is a left minimal extension, then there exists an isomorphism between two subrings, End(R)(M) (K) and End(R)(K) (M) of End(R)(K) and End(R)(M), respectively, modulo their Jacobson radicals. This isomorphism is used to deduce properties of the endomorphism ring of K from those of the endomorphism ring of M in certain situations such us when K is invariant under endomorphisms of M, or when K is invariant under automorphisms of M.
引用
收藏
页数:16
相关论文
共 13 条
[1]  
Auslander M., 1995, REPRESENTATION THEOR, V36
[2]   Exact categories [J].
Buehler, Theo .
EXPOSITIONES MATHEMATICAE, 2010, 28 (01) :1-69
[3]   Ziegler partial morphisms in additive exact categories [J].
Cortes-Izurdiaga, Manuel ;
Asensio, Pedro A. Guil ;
Kalebogaz, Berke ;
Srivastava, Ashish K. .
BULLETIN OF MATHEMATICAL SCIENCES, 2020, 10 (03)
[4]  
Faith C., 1964, ARCH MATH, V15, P166
[5]   Ideal approximation theory [J].
Fu, X. H. ;
Asensio, P. A. Guil ;
Herzog, I. ;
Torrecillas, B. .
ADVANCES IN MATHEMATICS, 2013, 244 :750-790
[6]  
Asensio PAG, 2006, CONTEMP MATH, V419, P155
[7]   The Schroder-Bernstein problem for modules [J].
Guil Asensio, Pedro A. ;
Kalebogaz, Berke ;
Srivastava, Ashish K. .
JOURNAL OF ALGEBRA, 2018, 498 :153-164
[8]   Modules invariant under automorphisms of their covers and envelopes [J].
Guil Asensio, Pedro A. ;
Tutuncu, Derya Keskin ;
Srivastava, Ashish K. .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 206 (01) :457-482
[9]   Automorphism-invariant modules satisfy the exchange property [J].
Guil Asensio, Pedro A. ;
Srivastava, Ashish K. .
JOURNAL OF ALGEBRA, 2013, 388 :101-106
[10]  
Johnson R.E., 1961, J. London Math. Soc., V36, P260