An On-Chip Relaxation Oscillator in 5-nm FinFET Using a Frequency-Error Feedback Loop

被引:7
作者
Mehta, Nandish [1 ,2 ]
Tell, Stephen G. [3 ]
Turner, Walker J. [4 ]
Tatro, Lamar [1 ]
Goh, Jih-Ren [5 ]
Gray, C. Thomas [3 ]
机构
[1] NVIDIA Corp, Santa Clara, CA 95050 USA
[2] Nvidia Res, Santa Clara, CA 95051 USA
[3] NVIDIA, Res Dept, Durham, NC 27713 USA
[4] NVIDIA Corp, NVIDIA Res Circuits Res Grp, Durham, NC 27713 USA
[5] NVIDIA Corp, Hsinchu 30069, Taiwan
关键词
Accumulated jitter; boot-up; FinFET; frequency-error feedback; ON-chip oscillator; physical clock attacks; relaxation oscillator; security; supply and temperature-tolerant; time interval error (TIE);
D O I
10.1109/JSSC.2022.3183208
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Availability of a reliable ON-chip oscillator can secure a system-on-chip (SoC) against physical clock attacks by enabling applications such as boot-up using ON-chip oscillator and hardware clock monitors. This article proposes a frequency-error feedback (FEF) loop-based relaxation oscillator for such applications. It suppresses the low-frequency noise and improves the time interval error (TIE) without degrading the period jitter. It also stabilizes the oscillator against supply and temperature variations. A 77-MHz oscillator prototype is fabricated in a commercial 5-nm FinFET process. Operating from 0.9-V digital and 1.2-V analog supplies, the prototype consumes a total of 0.84 mW and occupies an area of 0.0152 mm(2). It achieves a TIE of 3 ns over 10 K cycles which is 3x better than an oscillator without an FEF loop. Chip samples are picked from four wafer split lots. The worst case frequency variation measured from 16 samples is 1-0.25% across an analog supply change of 1.1-1.35 V, while a variation of +/- 0.3% is measured over -40 to 125 degrees C temperature from eight samples.
引用
收藏
页码:2898 / 2908
页数:11
相关论文
共 20 条
  • [1] Basse F., 2016, AMLOGIC S905 SOC BYP
  • [2] Cao Y, 2013, ISSCC DIG TECH PAP I, V56, P186, DOI 10.1109/ISSCC.2013.6487693
  • [3] Analysis and Design of an Ultralow-Power CMOS Relaxation Oscillator
    Denier, Urs
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (08) : 1973 - 1982
  • [4] Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization
    Enz, CC
    Temes, GC
    [J]. PROCEEDINGS OF THE IEEE, 1996, 84 (11) : 1584 - 1614
  • [5] Griffith D, 2014, ISSCC DIG TECH PAP I, V57, P300, DOI 10.1109/ISSCC.2014.6757443
  • [6] A 0.14mm2 16MHz CMOS RC Frequency Reference with a 1-Point Trimmed Inaccuracy of 400ppm from-45C to 85C
    Jiang, Hui
    Pan, Sining
    Gurleyuk, Cagri
    Makinwa, Kofi A. A.
    [J]. 2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 : 436 - +
  • [7] A 1.08-nW/kHz 13.2-ppm/°C Self-Biased Timer Using Temperature-Insensitive Resistive Current
    Jung, Jaehong
    Kim, Ik-Hwan
    Kim, Seong-Jin
    Lee, Yoonmyung
    Chun, Jung-Hoon
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (08) : 2311 - 2318
  • [8] Faults, injection methods, and fault attacks
    Kim, Chong Hee
    Quisquater, Jean-Jacques
    [J]. IEEE DESIGN & TEST OF COMPUTERS, 2007, 24 (06): : 544 - 545
  • [9] Koo J, 2017, ISSCC DIG TECH PAP I, P94, DOI 10.1109/ISSCC.2017.7870277
  • [10] Lasanen K, 2002, 2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV, PROCEEDINGS, P377