C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening

被引:183
作者
Cui, Xudong [1 ]
An, Wei [1 ]
Liu, Xiaoyang [1 ]
Wang, Hao [1 ]
Men, Yong [1 ]
Wang, Jinguo [1 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
INITIO MOLECULAR-DYNAMICS; CARBON-DIOXIDE; ELECTROREDUCTION PERFORMANCE; ENERGY CALCULATIONS; OXYGEN REDUCTION; ELECTRIC-FIELD; METAL; SELECTIVITY; COPPER; PATHWAYS;
D O I
10.1039/c8nr04961k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts (SACs) have emerged as an excellent platform for enhancing catalytic performance. Inspired by the recent experimental synthesis of nitrogenated holey 2D graphene (C2N-h2D) (Mahmood et aL, Nat. Commun., 2015, 6, 6486-6493), we report density functional theory calculations combined with computational hydrogen electrode model to show that C2N-h2D supported metal single atoms (M@C2N) are promising electrocatalysts for CO2 reduction reaction (CO2 RR). M confined at pyridinic N6 cavity promotes activation of inert O=C=O bonds and subsequent protonation steps, with *COOH -> *CO -> CHO predicted to be the primary pathway for producing methanol and methane. It is found that *CO + H+ + e -> *CHO is most likely to be the potential determining step; breaking the scaling relation of *CO and *CHO binding on M@C2N SACs may simply be a rare event that is sensitively controlled by the detailed geometry of the adsorbate. Among twelve metals screened, M@C2N SACs where M = Ti, Mn, Fe, Co, Ni, Ru were identified to be effective in catalyzing CO2 RR with lowered overpotentials (0.58 V-0.80 V).
引用
收藏
页码:15262 / 15272
页数:11
相关论文
共 83 条
  • [1] Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
    Abild-Pedersen, F.
    Greeley, J.
    Studt, F.
    Rossmeisl, J.
    Munter, T. R.
    Moses, P. G.
    Skulason, E.
    Bligaard, T.
    Norskov, J. K.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (01)
  • [2] Theoretical insight on reactivity trends in CO2 electroreduction across transition metals
    Akhade, Sneha A.
    Luo, Wenjia
    Nie, Xiaowa
    Asthagiri, Aravind
    Janik, Michael J.
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (04) : 1042 - 1053
  • [3] Towards the electrochemical conversion of carbon dioxide into methanol
    Albo, J.
    Alvarez-Guerra, M.
    Castano, P.
    Irabien, A.
    [J]. GREEN CHEMISTRY, 2015, 17 (04) : 2304 - 2324
  • [4] Interfacial and Alloying Effects on Activation of Ethanol from First-Principles
    An, Wei
    Men, Yong
    Wang, Jinguo
    Liu, Ping
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (10) : 5603 - 5611
  • [5] Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
    Back, Seoin
    Lim, Juhyung
    Kim, Na-Young
    Kim, Yong-Hyun
    Jung, Yousung
    [J]. CHEMICAL SCIENCE, 2017, 8 (02) : 1090 - 1096
  • [6] Selective Heterogeneous CO2 Electroreduction to Methanol
    Back, Seoin
    Kim, Heejin
    Jung, Yousung
    [J]. ACS CATALYSIS, 2015, 5 (02): : 965 - 971
  • [7] TiC- and TiN-Supported Single-Atom Catalysts for Dramatic Improvements in CO2 Electrochemical Reduction to CH4
    Backs, Seoin
    Jung, Yousung
    [J]. ACS ENERGY LETTERS, 2017, 2 (05): : 969 - 975
  • [8] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [9] Accounting for Bifurcating Pathways in the Screening for CO2 Reduction Catalysts
    Calle-Vallejo, Federico
    Koper, Marc T. M.
    [J]. ACS CATALYSIS, 2017, 7 (10): : 7346 - 7351
  • [10] Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires
    Cao, Liang
    Raciti, David
    Li, Chenyang
    Livi, Kenneth J. T.
    Rottmann, Paul F.
    Hemker, Kevin J.
    Mueller, Tim
    Wang, Chao
    [J]. ACS CATALYSIS, 2017, 7 (12): : 8578 - 8587