C2N-graphene supported single-atom catalysts for CO2 electrochemical reduction reaction: mechanistic insight and catalyst screening

被引:197
作者
Cui, Xudong [1 ]
An, Wei [1 ]
Liu, Xiaoyang [1 ]
Wang, Hao [1 ]
Men, Yong [1 ]
Wang, Jinguo [1 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
INITIO MOLECULAR-DYNAMICS; CARBON-DIOXIDE; ELECTROREDUCTION PERFORMANCE; ENERGY CALCULATIONS; OXYGEN REDUCTION; ELECTRIC-FIELD; METAL; SELECTIVITY; COPPER; PATHWAYS;
D O I
10.1039/c8nr04961k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts (SACs) have emerged as an excellent platform for enhancing catalytic performance. Inspired by the recent experimental synthesis of nitrogenated holey 2D graphene (C2N-h2D) (Mahmood et aL, Nat. Commun., 2015, 6, 6486-6493), we report density functional theory calculations combined with computational hydrogen electrode model to show that C2N-h2D supported metal single atoms (M@C2N) are promising electrocatalysts for CO2 reduction reaction (CO2 RR). M confined at pyridinic N6 cavity promotes activation of inert O=C=O bonds and subsequent protonation steps, with *COOH -> *CO -> CHO predicted to be the primary pathway for producing methanol and methane. It is found that *CO + H+ + e -> *CHO is most likely to be the potential determining step; breaking the scaling relation of *CO and *CHO binding on M@C2N SACs may simply be a rare event that is sensitively controlled by the detailed geometry of the adsorbate. Among twelve metals screened, M@C2N SACs where M = Ti, Mn, Fe, Co, Ni, Ru were identified to be effective in catalyzing CO2 RR with lowered overpotentials (0.58 V-0.80 V).
引用
收藏
页码:15262 / 15272
页数:11
相关论文
共 83 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   Theoretical insight on reactivity trends in CO2 electroreduction across transition metals [J].
Akhade, Sneha A. ;
Luo, Wenjia ;
Nie, Xiaowa ;
Asthagiri, Aravind ;
Janik, Michael J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (04) :1042-1053
[3]   Towards the electrochemical conversion of carbon dioxide into methanol [J].
Albo, J. ;
Alvarez-Guerra, M. ;
Castano, P. ;
Irabien, A. .
GREEN CHEMISTRY, 2015, 17 (04) :2304-2324
[4]   Interfacial and Alloying Effects on Activation of Ethanol from First-Principles [J].
An, Wei ;
Men, Yong ;
Wang, Jinguo ;
Liu, Ping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (10) :5603-5611
[5]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[6]   Selective Heterogeneous CO2 Electroreduction to Methanol [J].
Back, Seoin ;
Kim, Heejin ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (02) :965-971
[7]   TiC- and TiN-Supported Single-Atom Catalysts for Dramatic Improvements in CO2 Electrochemical Reduction to CH4 [J].
Backs, Seoin ;
Jung, Yousung .
ACS ENERGY LETTERS, 2017, 2 (05) :969-975
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   Accounting for Bifurcating Pathways in the Screening for CO2 Reduction Catalysts [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ACS CATALYSIS, 2017, 7 (10) :7346-7351
[10]   Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires [J].
Cao, Liang ;
Raciti, David ;
Li, Chenyang ;
Livi, Kenneth J. T. ;
Rottmann, Paul F. ;
Hemker, Kevin J. ;
Mueller, Tim ;
Wang, Chao .
ACS CATALYSIS, 2017, 7 (12) :8578-8587