Large enhancement of magnetocaloric effect driven by hydrostatic pressure in HoCuSi compound

被引:21
作者
Hao, Jia-Zheng [1 ,2 ,3 ]
Hu, Feng-Xia [2 ,3 ,4 ,5 ]
Zhou, Hou-Bo [2 ,3 ,4 ]
Liang, Wen-Hui [2 ,3 ,4 ]
Yu, Zi-Bing [2 ,3 ,4 ]
Shen, Fei-Ran [2 ,3 ,4 ]
Gao, Yi-Hong [2 ,3 ,4 ]
Qiao, Kai-Ming [2 ,3 ,4 ]
Li, Jia [2 ,3 ,4 ]
Zhang, Cheng [2 ,3 ,4 ]
Wang, Bing-Jie [1 ,2 ,3 ]
Wang, Jing [2 ,3 ,4 ,6 ]
He, Jun [1 ]
Sun, Ji-Rong [2 ,3 ,4 ,5 ]
Shen, Bao-Gen [2 ,3 ,4 ,5 ]
机构
[1] Cent Iron & Steel Res Inst, Div Funct Mat Res, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[6] Chinese Acad Sci, Fujian Innovat Acad, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetocaloric effect; Phase transformation; Magnetic materials; TRANSITION; REDUCTION;
D O I
10.1016/j.scriptamat.2020.04.019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dual field driven caloric effect has aroused great interest in recent years. Hydrostatic pressure can shift the temperature zone of magnetocaloric effect(MCE), but seldom enhance its magnitude. Here, a large enhancement of MCE driven by pressure under magnetic field available by permanent magnet has been achieved in HoCuSi compound without introducing hysteresis loss, which is favorable for developing hybrid field driven refrigeration applications at low temperature regions. A distinct mechanism is revealed. Pressure largely regulates non-collinear spin structure and magnetizing process through affecting crystal field interactions and spin-spin coupling, hence resulting in the significant impact on magnetic properties and MCE. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 27 条
  • [1] Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe
    Caron, L.
    Trung, N. T.
    Bruck, E.
    [J]. PHYSICAL REVIEW B, 2011, 84 (02)
  • [2] Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound
    Chen, J.
    Shen, B. G.
    Dong, Q. Y.
    Hu, F. X.
    Sun, J. R.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (15)
  • [3] CRYSTAL-FIELD EFFECTS IN RARE-EARTH COMPOUNDS WITH THE THCR2SI2 STRUCTURE
    DIRKEN, MW
    THIEL, RC
    BUSCHOW, KHJ
    [J]. JOURNAL OF THE LESS-COMMON METALS, 1989, 147 (01): : 97 - 104
  • [4] Magnetocaloric effect: From materials research to refrigeration devices
    Franco, V.
    Blazquez, J. S.
    Ipus, J. J.
    Law, J. Y.
    Moreno-Ramirez, L. M.
    Conde, A.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2018, 93 : 112 - 232
  • [5] Inverse-direct magnetocaloric effect crossover in Ni47Mn40Sn12.5Cu0.5 Heusler alloy in cyclic magnetic fields
    Gamzatov, A. G.
    Aliev, A. M.
    Varzaneh, A. Ghotbi
    Kameli, P.
    Sarsari, I. Abdolhosseini
    Yu, S. C.
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (17)
  • [6] Magnetocaloric effect in Tb5Si2Ge2 under applied pressure
    Gomes, M. B.
    de Oliveira, N. A.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (14) : E153 - E155
  • [7] Electric Field Control of the Magnetocaloric Effect
    Gong, Yuan-Yuan
    Wang, Dun-Hui
    Cao, Qing-Qi
    Liu, En-Ke
    Liu, Jian
    Du, You-Wei
    [J]. ADVANCED MATERIALS, 2015, 27 (05) : 801 - 805
  • [8] Recent developments in magnetocaloric materials
    Gschneidner, KA
    Pecharsky, VK
    Tsokol, AO
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (06) : 1479 - 1539
  • [9] Effects of antiferro-ferromagnetic phase coexistence and spin fluctuations on the magnetic and related properties of NdCuSi
    Gupta, Sachin
    Suresh, K. G.
    Das, A.
    Nigam, A. K.
    Hoser, A.
    [J]. APL MATERIALS, 2015, 3 (06):
  • [10] Large Enhancement of Magnetocaloric and Barocaloric Effects by Hydrostatic Pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-Type Structure
    Hao, Jiazheng
    Hu, Fengxia
    Wang, Jian-Tao
    Shen, Fei-Ran
    Yu, Zibing
    Zhou, Houbo
    Wu, Hui
    Huang, Qingzhen
    Qiao, Kaiming
    Wang, Jing
    He, Jun
    He, Lunhua
    Sun, Ji-Rong
    Shen, Baogen
    [J]. CHEMISTRY OF MATERIALS, 2020, 32 (05) : 1807 - 1818