Remarks on harmonic index of graphs

被引:0
|
作者
Liu, Jingzhong [2 ]
Zhang, Qianhong [1 ,3 ]
机构
[1] Guizhou Coll Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Guizhou, Peoples R China
[2] Hunan Inst Technol, Dept Comp & Informat Sci, Hengyang 421002, Hunan, Peoples R China
[3] Cent S Univ, Dept Math, Changsha 410075, Hunan, Peoples R China
关键词
Degree; harmonic index; Bounds; Topological index; CONNECTIVITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic index of a connected graph G, denoted by H(G), is defined as H(G) = Sigma(u upsilon is an element of E(G)) 2/d(u)+2 upsilon, where cit, is the degree of a vertex v in G. In this note, we extend a result of Zhong concerning the upper bound for harmonic index of unicyclic graphs to general connected graphs. In addition, we give a direct proof of Zhong's another result on the lower bound for harmonic index of trees.
引用
收藏
页码:281 / 285
页数:5
相关论文
共 50 条
  • [1] The Harmonic Index on Unicyclic Graphs
    Zhong, Lingping
    ARS COMBINATORIA, 2012, 104 : 261 - 269
  • [2] The harmonic index on bicyclic graphs
    Zhu, Yan
    Chang, Renying
    Wei, Xiang
    ARS COMBINATORIA, 2013, 110 : 97 - 104
  • [3] ON THE HARMONIC INDEX AND DIAMETER OF UNICYCLIC GRAPHS
    Deng, Hanyuan
    Vetrik, Tomas
    Balachandran, Selvaraj
    MATHEMATICAL REPORTS, 2020, 22 (01): : 11 - 18
  • [4] The harmonic index for graphs
    Zhong, Lingping
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 561 - 566
  • [5] INVERSE DEGREE, RANDIC INDEX AND HARMONIC INDEX OF GRAPHS
    Das, Kinkar Ch.
    Balachandran, Selvaraj
    Gutman, Ivan
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (02) : 304 - 313
  • [6] The Harmonic index of general graphs, nanocones and triangular benzenoid graphs
    Yang, Lihui
    Hua, Hongbo
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2012, 6 (5-6): : 660 - 663
  • [7] The harmonic index of product graphs
    B. N. Onagh
    Mathematical Sciences, 2017, 11 : 203 - 209
  • [8] The Harmonic Index for Bicyclic Graphs
    Zhong, Lingping
    Xu, Kexiang
    UTILITAS MATHEMATICA, 2013, 90 : 23 - 32
  • [9] NOTES ON THE HARMONIC INDEX OF GRAPHS
    Zheng, Yirong
    Lv, Jian-Bo
    LI, Jianxi
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (06) : 2247 - 2255
  • [10] On The Harmonic Index and The Girth for Graphs
    Zhong, Lingping
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2013, 16 (04): : 253 - 260