On the existence and regularity of ground states for a nonlinear system of coupled Schrodinger equations in RN

被引:0
作者
Cipolatti, R
Zumpichiatti, W
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Inst Matemat, Dept Metodos Matemat, Rio De Janeiro, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 1999年 / 18卷 / 01期
关键词
Schrodinger equations; ground states;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the regularity (Theorem 2.1) and the existence (Theorem 3.2) of standing waves for a class of nonlinear systems of Schrodinger equations in R-N arising in several branches of sciences, such as nonlinear optics and biology. By using P. L. Lions' Concentration Compactness Principle, we prove for N greater than or equal to 3 the existence of ground states, that means standing waves of minimal Lagrangian.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1974, Sov. Phys. JETP
[2]  
BERGBH J, 1976, INTERPOLATION SPACES
[3]  
BERKHOER AL, 1970, ZH EKSP TEOR FIZ, V31, P486
[4]  
Cazenave T., 1993, An introduction to nonlinear Schrodinger equations, V26
[5]  
CAZENAVE T, 1994, BLOW UP SCATTERING N, V30
[6]   ON THE EXISTENCE OF STANDING WAVES FOR A DAVEY-STEWARTSON SYSTEM [J].
CIPOLATTI, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :967-988
[7]  
CIPOLATTI R, GROUND STATES SYSTEM
[8]  
DAVIDOV AS, 1982, SOLITONS QUASI ONE D, V25, P298
[9]   MANY-PARTICLE EFFECTS IN NEARLY INTEGRABLE SYSTEMS [J].
KIVSHAR, YS ;
MALOMED, BA .
PHYSICA D, 1987, 24 (1-3) :125-154
[10]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223