On the Grassmann T-space

被引:5
作者
Bekh-Ochir, Chuluundorj [1 ]
Riley, David [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Grassmann algebra; exterior algebra; T-ideal; T-space; variety; polynomial identity;
D O I
10.1142/S0219498808002825
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Grassmann T-space, S-3, generated by the commutator [x(1), x(2), x(3)] in the free unital associative algebra K < x(1), x(2) , . . .> over a field of characteristic zero. We prove that S-3 = S-2 boolean AND T-3, where S-2 is the commutator T-space generated by [x(1), x(2)] and T-3 is the Grassmann T-ideal generated by S-3. We also construct an explicit basis for each vector space S-3 boolean AND P-n, where P-n represents the space of all multilinear polynomials of degree n in x(1) , . . . , x(n), and deduce the recursive vector space decomposition T-3 boolean AND P-n = (S-3 boolean AND P-n). (T-3 boolean AND Pn-1) x(n).
引用
收藏
页码:319 / 336
页数:18
相关论文
共 9 条
[1]  
ANANIN AZ, 1977, SIBERIAN MATH J, V17, P549
[2]  
BELOV AY, RUSSIAN MAT IN PRESS
[3]   ON THE HILBERT SERIES OF RELATIVELY FREE ALGEBRAS [J].
DRENSKY, V .
COMMUNICATIONS IN ALGEBRA, 1984, 12 (19-2) :2335-2347
[4]  
Drensky V., 2000, GRADUATE COURSE ALGE
[5]  
Kemer A., 1991, TRANSLATIONS MATH MO, V87
[6]   POLYNOMIAL IDENTITIES OF GRASSMANN ALGEBRA [J].
KRAKOWSKI, D ;
REGEV, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) :429-438
[7]  
Latyshev V. N., 1963, SIB MAT ZH, V4, P1122
[8]  
Shchigolev V.V., 2001, IZV RAN M, V65, P191
[9]  
Specht W., 1950, MATH Z, V52, P557, DOI 10.1007/BF02230710