Localized Recrystallization Induced by Subgrain Rotation in Sn-3.0Ag-0.5Cu Ball Grid Array Solder Interconnects During Thermal Cycling

被引:25
作者
Chen, Hongtao [1 ]
Han, Jing [1 ]
Li, Mingyu [1 ,2 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding Prod Technol, Harbin 150001, Peoples R China
基金
美国国家科学基金会;
关键词
Pb-free; soldering; electron backscattered diffraction (EBSD); recrystallization; FATIGUE PROPERTIES; INTERMETALLIC COMPOUNDS; CRYSTAL ORIENTATION; SN GRAIN; BETA-SN; GROWTH; TIN; MICROSTRUCTURE; RELIABILITY; BEHAVIOR;
D O I
10.1007/s11664-011-1782-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The evolution of microstructures and grain orientations of a Pb-free solder interconnect during thermal cycling significantly affects its mechanical properties and failure modes. Thus, Sn-3.0Ag-0.5Cu ball grid array assemblies were subjected to thermal cycling to study the thermomechanical responses of the solder interconnects. The orientations and microstructures of the solder interconnects were studied by optical microscopy with cross-polarized light and scanning electron microscopy with an electron backscattered diffraction analysis system. Localized recrystallization behavior was observed in Pb-free solder interconnects during thermal cycling. Closer examination of the very early stage of recrystallization in the same solder interconnect revealed that the subgrains appeared before the formation of the recrystallized grains, and the orientations of the small recrystallized grains separated by high-angle grain boundaries evolved from the initial orientations by subgrain rotation. The localized recrystallization produced fine-grained microstructures during thermal cycling, providing an additional deformation mechanism for the solder interconnects, i.e., grain boundary sliding, which would have been impossible prior to recrystallization. The grain orientation has a strong effect on damage generation and the subsequent failure mode; initiation and propagation of cracks could be facilitated by the intrinsic anisotropic thermomechanical responses of the differently oriented grains, leading to a change in the crack propagation path and corresponding failure mode.
引用
收藏
页码:2470 / 2479
页数:10
相关论文
共 44 条
[1]   Lead-free solders in microelectronics [J].
Abtew, M ;
Selvaduray, G .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2000, 27 (5-6) :95-141
[2]   Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints [J].
Bieler, Thomas R. ;
Jiang, Hairong ;
Lehman, Lawrence P. ;
Kirkpatrick, Tim ;
Cotts, Eric J. ;
Nandagopal, Bala .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2008, 31 (02) :370-381
[3]   Localized recrystallization and cracking of lead-free solder interconnections under thermal cycling [J].
Chen, Hongtao ;
Mueller, Maik ;
Mattila, Tonu Tuomas ;
Li, Jue ;
Liu, Xuwen ;
Wolter, Klaus-Juergen ;
Paulasto-Krockel, Mervi .
JOURNAL OF MATERIALS RESEARCH, 2011, 26 (16) :2103-2116
[4]   CONSTITUTIVE RELATIONS FOR TIN-BASED SOLDER JOINTS [J].
DARVEAUX, R ;
BANERJI, K .
IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 1992, 15 (06) :1013-1024
[5]   Current issues in recrystallization: a review [J].
Doherty, RD ;
Hughes, DA ;
Humphreys, FJ ;
Jonas, JJ ;
Jensen, DJ ;
Kassner, ME ;
King, WE ;
McNelley, TR ;
McQueen, HJ ;
Rollett, AD .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 238 (02) :219-274
[6]  
DUNFORD S, 2004, 54 EL COMP TECHN C P, P1
[7]   Effect of thermo-mechanically induced microstructural coarsening on the evolution of creep response of SnAg-based microelectronic solders [J].
Dutta, I ;
Pan, D ;
Marks, RA ;
Jadhav, SG .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 410 :48-52
[8]   Pb-free solders for flip-chip interconnects [J].
Frear, DR ;
Jang, JW ;
Lin, JK ;
Zhang, C .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2001, 53 (06) :28-+
[9]  
HARDWICK D, 1961, J I MET, V90, P21
[10]   Solid state interfacial reaction of Sn-37Pb and Sn-3.5Ag solders with Ni-P under bump metallization [J].
He, M ;
Chen, Z ;
Qi, GJ .
ACTA MATERIALIA, 2004, 52 (07) :2047-2056