Many solutions of elliptic problems on Rn of irrational slope

被引:35
作者
Bessi, U [1 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
Aubry-Mather theory for elliptic problems on R-n; minimal and non-self intersecting solutions; multiplicity for Denjoy sets;
D O I
10.1080/03605300500299992
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem -Delta u+F-u(x,u)=0 on R-n , where F is a smooth function periodic of period 1 in all its variables. We show that, under suitable hypotheses on F , this problem has a family of non-self-intersecting solutions u(D), which are at finite distance from a plane of slope (omega,0,...,0) with omega irrational. These solutions depend on a real parameter D; if D not equal D' , then the closures of the integer translates of u(D) and of u(D') do not intersect.
引用
收藏
页码:1773 / 1804
页数:32
相关论文
共 15 条
[1]  
ALBERTI G, 2001, ACTA APPL AMTH, V65, P299
[2]  
ALESSIO F, 1998, ANN SCUOLA NORM SU S, V27, P47
[3]  
AMBROSIO L, 1991, UNPUB CORSO INTRO TE
[4]   A UNIQUENESS THEOREM FOR ZN-PERIODIC VARIATIONAL-PROBLEMS [J].
BANGERT, V .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (04) :511-531
[5]  
BANGERT V, 1987, AEQUATIONES MATH, V34, P153
[6]   A NEW PROOF OF THE AUBRY-MATHER THEOREM [J].
GOLE, C .
MATHEMATISCHE ZEITSCHRIFT, 1992, 210 (03) :441-448
[7]  
John F., 1991, APPL MATH SCI, V1
[8]   MORE DENJOY MINIMAL SETS FOR AREA PRESERVING DIFFEOMORPHISMS [J].
MATHER, JN .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (04) :508-557
[10]   MINIMAL SOLUTIONS OF VARIATIONAL-PROBLEMS ON A TORUS [J].
MOSER, J .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1986, 3 (03) :229-272